Espaces de Krein et index des systèmes hamiltoniens

V. Brousseau

Annales de l'I.H.P. Analyse non linéaire (1990)

  • Volume: 7, Issue: 6, page 525-560
  • ISSN: 0294-1449

How to cite

top

Brousseau, V.. "Espaces de Krein et index des systèmes hamiltoniens." Annales de l'I.H.P. Analyse non linéaire 7.6 (1990): 525-560. <http://eudml.org/doc/78238>.

@article{Brousseau1990,
author = {Brousseau, V.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Hamiltonian systems; Hilbert product; resolvant; symplectic operator; Krein product; normal operator; Krein determinant; Krein trace; index},
language = {fre},
number = {6},
pages = {525-560},
publisher = {Gauthier-Villars},
title = {Espaces de Krein et index des systèmes hamiltoniens},
url = {http://eudml.org/doc/78238},
volume = {7},
year = {1990},
}

TY - JOUR
AU - Brousseau, V.
TI - Espaces de Krein et index des systèmes hamiltoniens
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1990
PB - Gauthier-Villars
VL - 7
IS - 6
SP - 525
EP - 560
LA - fre
KW - Hamiltonian systems; Hilbert product; resolvant; symplectic operator; Krein product; normal operator; Krein determinant; Krein trace; index
UR - http://eudml.org/doc/78238
ER -

References

top
  1. [AG] N.I. Achieser et I.M. Glasman, Theorie der linearen Operatoren im Hilbert-Raum, Akademie Verlag, Berlin, 1975. Zbl0308.47001MR66560
  2. [Be] A. Bensoussan, Stochastic Control byFunctional Analysis Methods, North Holland, 1982. Zbl0474.93002MR652685
  3. [Br1] V. Brousseau, L'index d'un système hamiltonien linéaire, C. R. Acad. Sci. Paris, série I, n° 8, 1986, p. 351-354. Zbl0592.58022MR860837
  4. [Br2] V. Brousseau, D.P. n° 8809 du Ceremade. 
  5. [CZ] C. Conley et E. Zehnder, Morse-type index for flows and periodic solutions for Hamiltonian equations, Comm. P.A.M., vol. 37, 1984, p. 207-253. Zbl0559.58019MR733717
  6. [E1] I. Ekeland, Une théorie de Morse pour les systèmes hamiltoniens convexes, Ann. Inst. Henri-Poincaré, Analyse non linéaire, vol. 1, 1984, p. 19-78. Zbl0537.58018MR738494
  7. [E2] I. Ekeland, An index theory for periodic solutions of convex hamiltonian systems, Nonlinear Functional Analysis and its Applications, Proc. Symp. Pure Math., vol. 45, 1986, p. 395-423. Zbl0596.34023MR843575
  8. [L1] H. Langer, Spehtraltheorie linearer Operatoren in J-Raümen und einige Anwerdungen auf die Schar L(λ)=λ2I+λB+C, Thèse d'Habilitation, Technische Unversität Dresden, 1965. 
  9. [L2] H. Langer, Invariante Teilraüme definisierbarer J-selbst-adjungreiten Operatoren, Ann. Acad. Sci. Fenn. Ser. AI, vol. 475, 1971. Zbl0232.47009MR287347
  10. [KL] M.G. Krein et H. Langer, Sur la fonction spectrale d'un opérateur autoadjoint dans un espace à métrique indéfinie (en russe), Dokl. Akad. Nauk. S.S.S.R., vol. 152, 1963, p. 39-42. Zbl0131.12604
  11. [YS] V. Yakubovick et V. Starzhinski, Linear differential equations with periodic coefficients, Halsted Press, Wiley, 1975. Zbl0308.34001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.