How to blow infinitely large soap bubbles with a fixed boundary

Rugang Ye

Annales de l'I.H.P. Analyse non linéaire (1991)

  • Volume: 8, Issue: 1, page 59-78
  • ISSN: 0294-1449

How to cite

top

Ye, Rugang. "How to blow infinitely large soap bubbles with a fixed boundary." Annales de l'I.H.P. Analyse non linéaire 8.1 (1991): 59-78. <http://eudml.org/doc/78245>.

@article{Ye1991,
author = {Ye, Rugang},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {volume constrained Plateau problem; rectifiable Jordan curve; area minimizing surface; constant mean curvature},
language = {eng},
number = {1},
pages = {59-78},
publisher = {Gauthier-Villars},
title = {How to blow infinitely large soap bubbles with a fixed boundary},
url = {http://eudml.org/doc/78245},
volume = {8},
year = {1991},
}

TY - JOUR
AU - Ye, Rugang
TI - How to blow infinitely large soap bubbles with a fixed boundary
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1991
PB - Gauthier-Villars
VL - 8
IS - 1
SP - 59
EP - 78
LA - eng
KW - volume constrained Plateau problem; rectifiable Jordan curve; area minimizing surface; constant mean curvature
UR - http://eudml.org/doc/78245
ER -

References

top
  1. [1] M. Anderson, Curvature Estimates for Minimal Surfaces in 3-Manifolds, Ann. Sci. Ec. Norm. Sup., T. 18, 1985, pp. 89-105. Zbl0578.49027MR803196
  2. [2] J.L. Barbosa and M. Carmo, Do: Stability of Hypersurfaces with Constant Mean Curvature, Math. Z., Vol. 185, 1984, pp. 339-353. Zbl0513.53002MR731682
  3. [3] H. Brezis and J.M. Coron, Convergence of Solutions of H-Systems or How to Blow Bubbles, Arch. Rational Mech. Anal., Vol. 89, 1985, pp. 21-56. Zbl0584.49024MR784102
  4. [4] R. Courant, Dirichlet's Principle, Conformal Mapping and Minimal Surfaces, Reprint, Springer, 1977, New York. Zbl0354.30012MR454858
  5. [5] H. Federer, Geometric Measure Theory, Springer, 1969, New York. Zbl0176.00801MR257325
  6. [6] R. Gulliver, Regularity of Minimizing Surfaces of Prescribed Mean Curvature. Ann. Math., Vol. 97, 1973, pp. 275-305. Zbl0246.53053MR317188
  7. [7] R. Gulliver, Branched Immersions of Surfaces and Reduction of Topological Type I, Math. Z., Vol. 145, 1975, pp. 267-288. Zbl0299.57014MR394679
  8. [8] R. Gulliver, Finiteness of the Ramified Set For Branched Immersions of Surfaces, Pac. J. Math., Vol. 64, 1976, pp. 153-165. Zbl0336.55002MR467752
  9. [9] R. Gulliver and F.D. Lesley, On Boundary Branch Points of Minimizing Surfaces, Arch. Rational Mech. Anal., Vol. 52, 1973, pp. 20-25. Zbl0263.53009MR346641
  10. [10] E. Heinz, An Inequality of Isoperimetric Type for Surfaces of Constant Mean Curvature, Arch. Rational Mech. Anal., Vol. 33, 1969, pp. 155-168. Zbl0176.51602MR238188
  11. [11] S. Hildebrandt and K.-O. Widman, Some Rrgularity Results for Quasilinear Elliptic Systems of Second Order, Math. Z., Vol. 142, 1975, pp. 67-86. Zbl0317.35040MR377273
  12. [12] J.E. Hutchinson, Generalized Second Fundamental Form and the Existence of Surfaces Minimizing Curvature, Research Report, No. 51, 1983, Center for Math. Analysis, Australian National University. 
  13. [13] J.C.C. Nitsche, Vorlesungen über Minimalflächen, Springer, 1975, New York. Zbl0319.53003MR448224
  14. [14] R. Osserman, A Proof of the Regularity Everwhere of the Classical Solution of Plateau's Problem, Ann. Math., Vol. 91, 1970, pp. 550-569. Zbl0194.22302MR266070
  15. [15] R. Schoen, Estimates for Stable Minimal Surfaces in Three Dimensional Manifolds, Ann. Math. Studies, Vol. 103, Princeton Univ. Press, Princeton, 1983. Zbl0532.53042MR795231
  16. [16] L. Simon, Lectures on Geometric Measure Theory, Proceed. Centre Math. Anal., Australian National University, Vol. 3, 1983. Zbl0546.49019MR756417
  17. [17] L. Simon, Asymptotics for a Class of Nonlinear Evolution Equations, with Applications to Geometric Problems, Ann. Math., (2), Vol. 118, 1983, pp. 525-571. Zbl0549.35071MR727703
  18. [18] K. Steffen, Flächen konstanter mittlerer Krümmung mit vorgegebenem Volumen oder Flächeninhalt, Arch. Rational Mech. Anal., Vol. 49, 1972, pp. 99-128. Zbl0259.53043MR341261
  19. [19] K. Steffen and H.C. Wente, The Non-Existence of Branched Points in Solutions to Certain Clas of Plateau Type Variational Problems, Math. Z., Vol. 163, 1978, pp. 211-238. Zbl0404.49037
  20. [20] M. Struwe, Plateau's Problem and the Calculus of Variations, Lec. Notes, No. 32, SFB 72, Bonn, 1986. 
  21. [21] F. Tomi and R. Ye, TheExterior Plateau problem, Preprint, Heidelberg, 1988. Zbl0719.53006MR1076131
  22. [22] H.C. Wente, A General Existence Theorem for Surfaces of Constant Mean Curvature, Math. Z., Vol. 120, 1971, pp. 277-288. Zbl0214.11101MR282300
  23. [23] H.C. Wente, Large Solutions to the Volume Constrained Plateau Problem, Arch. Rational Mech. Anal., Vol. 75, 1980, pp. 59-77. Zbl0473.49029MR592104

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.