Heteroclinic orbits for spatially periodic hamiltonian systems

P. L. Felmer

Annales de l'I.H.P. Analyse non linéaire (1991)

  • Volume: 8, Issue: 5, page 477-497
  • ISSN: 0294-1449

How to cite

top

Felmer, P. L.. "Heteroclinic orbits for spatially periodic hamiltonian systems." Annales de l'I.H.P. Analyse non linéaire 8.5 (1991): 477-497. <http://eudml.org/doc/78262>.

@article{Felmer1991,
author = {Felmer, P. L.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {critical point theory; Hamiltonian systems; heteroclinic orbits},
language = {eng},
number = {5},
pages = {477-497},
publisher = {Gauthier-Villars},
title = {Heteroclinic orbits for spatially periodic hamiltonian systems},
url = {http://eudml.org/doc/78262},
volume = {8},
year = {1991},
}

TY - JOUR
AU - Felmer, P. L.
TI - Heteroclinic orbits for spatially periodic hamiltonian systems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1991
PB - Gauthier-Villars
VL - 8
IS - 5
SP - 477
EP - 497
LA - eng
KW - critical point theory; Hamiltonian systems; heteroclinic orbits
UR - http://eudml.org/doc/78262
ER -

References

top
  1. [1] K.C. Chang, Y. Long and E. Zehnder, Forced Oscillations for the Triple Pendulum, E.T.H. Zürich Report, August 1988. Zbl0723.70025
  2. [2] P. Felmer, Multiple Solutions for Lagrangean Systems in Tn, Nonlinear AnalysisT.M.A. (to appear). Zbl0717.58050
  3. [3] P. Felmer, Periodic Solutions of Spatially Periodic Hamiltonian Systems, Journal of Differential Equations (to appear). Zbl0763.34032MR1168976
  4. [4] G. Fournier and M. Willem, Multiple Solutions of the Forced Double Pendulum Equation, Preprint. Zbl0683.70022
  5. [5] V. Coti-Zelati and I. Ekeland, A Variational Approach to Homoclinic Orbits in Hamiltonian Systems, Preprint, S.I.S.S.A., 1988. Zbl0731.34050
  6. [6] H. Hofer and K. Wysocki, First Order Elliptic Systems and the Existence of Homoclinic Orbits in Hamiltonian System, Preprint. Zbl0702.34039
  7. [7] P. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations", C.B.M.S. Regional Conference Series in Mathematics, 65, A.M.S., Providence, 1986. Zbl0609.58002MR845785
  8. [8] P. Rabinowitz, Periodic and Heteroclinic Orbits for a Periodic Hamiltonian System, Analyse Nonlineare (to appear). Zbl0701.58023MR1030854
  9. [9] P. Rabinowitz, Homoclinic Orbits for a Class of Hamiltonian Systems, Preprint. Zbl0705.34054MR1051605
  10. [10] K. Tanaka, Homoclinic Orbits for a Singular Second Order Hamiltonian System, Preprint, 1989. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.