Multiple solutions of the forced double pendulum equation

G. Fournier; M. Willem

Annales de l'I.H.P. Analyse non linéaire (1989)

  • Volume: S6, page 259-281
  • ISSN: 0294-1449

How to cite

top

Fournier, G., and Willem, M.. "Multiple solutions of the forced double pendulum equation." Annales de l'I.H.P. Analyse non linéaire S6 (1989): 259-281. <http://eudml.org/doc/78198>.

@article{Fournier1989,
author = {Fournier, G., Willem, M.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {double pendulum equation; Lusternik-Schnirelman category; constant solutions; critical point theory},
language = {eng},
pages = {259-281},
publisher = {Gauthier-Villars},
title = {Multiple solutions of the forced double pendulum equation},
url = {http://eudml.org/doc/78198},
volume = {S6},
year = {1989},
}

TY - JOUR
AU - Fournier, G.
AU - Willem, M.
TI - Multiple solutions of the forced double pendulum equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1989
PB - Gauthier-Villars
VL - S6
SP - 259
EP - 281
LA - eng
KW - double pendulum equation; Lusternik-Schnirelman category; constant solutions; critical point theory
UR - http://eudml.org/doc/78198
ER -

References

top
  1. [1] D.C. Clark, A variant of the Lusternick-Schnirelman Theory, Indiana J. Math22, (1972) 65-74. Zbl0228.58006MR296777
  2. [2] G. Fournier, A Simplicial Approach to the Fixed Point Index, Fixed Point Theory, Sherbrooke, Quebec 1980, Edited by E. Fadell and G. Fournier, Springer-Verlag886. 73-102 Zbl0482.55003MR643000
  3. [3] G. Fournier - J. Mawhin, On Periodic Solutions of Forced Pendulum-like Equations, J.Differential Equations60(1985), 381-395. Zbl0616.34014MR811773
  4. [4] J. Mawhin - M. Willem, Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations, J.Differential Equations52(1984), 264-287. Zbl0557.34036MR741271
  5. [5] W.M. Ni, Some Minimax Principles and their Applications in nonlinear Elliptic Equations, Journal d'analyse mathématiques37( 1980), 248-275. Zbl0462.58016MR583639
  6. [6] R. Palais, The Lusternik-Schnirelman theory on Banach manifolds, Topology5(1966), 115-132. Zbl0143.35203MR259955
  7. [7] A. Capozzi , D. Fortunato and A. Salvatore, Periodic Solutions of Lagrahgian Systems with Bounded Potential, Preprint. Zbl0664.34053MR887004

NotesEmbed ?

top

You must be logged in to post comments.