Multiple solutions of the forced double pendulum equation
Annales de l'I.H.P. Analyse non linéaire (1989)
- Volume: S6, page 259-281
- ISSN: 0294-1449
Access Full Article
topHow to cite
topReferences
top- [1] D.C. Clark, A variant of the Lusternick-Schnirelman Theory, Indiana J. Math22, (1972) 65-74. Zbl0228.58006MR296777
- [2] G. Fournier, A Simplicial Approach to the Fixed Point Index, Fixed Point Theory, Sherbrooke, Quebec 1980, Edited by E. Fadell and G. Fournier, Springer-Verlag886. 73-102 Zbl0482.55003MR643000
- [3] G. Fournier - J. Mawhin, On Periodic Solutions of Forced Pendulum-like Equations, J.Differential Equations60(1985), 381-395. Zbl0616.34014MR811773
- [4] J. Mawhin - M. Willem, Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations, J.Differential Equations52(1984), 264-287. Zbl0557.34036MR741271
- [5] W.M. Ni, Some Minimax Principles and their Applications in nonlinear Elliptic Equations, Journal d'analyse mathématiques37( 1980), 248-275. Zbl0462.58016MR583639
- [6] R. Palais, The Lusternik-Schnirelman theory on Banach manifolds, Topology5(1966), 115-132. Zbl0143.35203MR259955
- [7] A. Capozzi , D. Fortunato and A. Salvatore, Periodic Solutions of Lagrahgian Systems with Bounded Potential, Preprint. Zbl0664.34053MR887004