Fibrés dynamiques. Entropie et dimension
Annales de l'I.H.P. Analyse non linéaire (1992)
- Volume: 9, Issue: 2, page 119-146
- ISSN: 0294-1449
Access Full Article
topHow to cite
topReferences
top- [BK] M. Brin et A. Katok, On Local Entropy, Geometric Dynamics, Lect. Notes Math., n° 1007, 1983, p. 30-38. Zbl0533.58020MR730261
- [DM] C. Dellacherie et P.A. Meyer, Probabilités et potentiel, chap. 1, t. IV, Hermann. Zbl0323.60039MR488194
- [LY] F. Ledrappier et L.S. Young, The Metric Theory of Diffeomorphisms, Ann. Math., vol. 122, 1985, p. 509-574. Zbl0605.58028MR819556
- [Ma]1 R. Mañé, Lyapounov Exponents and Stable Manifolds for Compact Transformations, Geometric Dynamic, Lect. Notes Math., n° 1007, 1983, p. 522-577. Zbl0522.58030MR730286
- [Ma]2 R. MañéA proof of Pesin Formula, Ergodic TheoryDynamical Systems, vol. 1, 1981, p. 95-102. Zbl0489.58018MR627789
- [Pe] Ya. Pesin, Characteristic Lyapounov Exponents and Smooth Ergodic Theory, Russian Math. Surveys, vol. 32, 1977, p. 54-114. Zbl0383.58011MR466791
- [Te] R. Temam, Infinit-Dimensional Dynamical Systems in Mechanics and in Physics, Applied Mathematical Science, vol. 68, 1988, Springer-Verlag, QA1.A647. Zbl0662.35001MR953967
- [Th]1 P. Thieullen, Fibrés dynamiques asymptotiquement compacts. Exposants de Lyapounov. Entropie. Dimension, Ann. Inst. Henri Poincaré, Analyse non linéaire, vol. 4, 1, 1987, p. 49-97. Zbl0622.58025MR877991
- [Th]2 P. Thieullen, Généralisation du théorème de Pesin pour l'α-entropie. Soumis au colloque Lyapunov Exponents à Oberwolfach., Lect. Notes Math., Springer-Verlag. [Wa] P. Walters, An Introduction to Ergodic Theory, Springer-Verlag, New York, Heidelberg, Berlin. Zbl0754.58020MR1178962