Gain of regularity for equations of KdV type
W. Craig; T. Kappeler; W. Strauss
Annales de l'I.H.P. Analyse non linéaire (1992)
- Volume: 9, Issue: 2, page 147-186
- ISSN: 0294-1449
Access Full Article
topHow to cite
topCraig, W., Kappeler, T., and Strauss, W.. "Gain of regularity for equations of KdV type." Annales de l'I.H.P. Analyse non linéaire 9.2 (1992): 147-186. <http://eudml.org/doc/78274>.
@article{Craig1992,
author = {Craig, W., Kappeler, T., Strauss, W.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {regularity},
language = {eng},
number = {2},
pages = {147-186},
publisher = {Gauthier-Villars},
title = {Gain of regularity for equations of KdV type},
url = {http://eudml.org/doc/78274},
volume = {9},
year = {1992},
}
TY - JOUR
AU - Craig, W.
AU - Kappeler, T.
AU - Strauss, W.
TI - Gain of regularity for equations of KdV type
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1992
PB - Gauthier-Villars
VL - 9
IS - 2
SP - 147
EP - 186
LA - eng
KW - regularity
UR - http://eudml.org/doc/78274
ER -
References
top- [Co] A. Cohen, Solutions of the Korteweg-de Vries Equation from Irregular Data, Duke Math. J., Vol. 45, 1978, pp. 149-181. Zbl0372.35022MR470533
- [CS] P. Constantin and J.C. Saut, Local Smoothing Properties of Dispersive Equations, J. A.M.S., Vol. 1, 1988, pp. 413-439. Zbl0667.35061MR928265
- [CG] W. Craig and J. Goodman, Linear Dispersive Equations of Airy Type, J. Diff. Equ., Vol. 87, 1990, pp. 38-61. Zbl0709.35090MR1070026
- [CKS] W. Craig, T. Kappeler and W. Strauss, Infinite Gain of Regularity for Dispersive Evolution Equations, Microlocal Analysis and Nonlinear Waves, I.M.A., Vol. 30, Springer, 1991, pp. 47-50. Zbl0767.35076MR1120283
- [GV] J. Ginibre and G. Velo, Commutator Expansions and Smoothing Properties of GeneralizedBenjamin-Ono Equations, preprint. Zbl0705.35126
- [HO] N. Hayashi and T. Ozawa, Smoothing Effect for Some Schrödinger Equations, J. of Funct. Anal., Vol. 85, 1989, pp. 307-348. Zbl0681.35079MR1012208
- [HNT1] N. Hayashi, K. Nakamitsu and M. Tsutsumi, On Solutions of the Initial Value Problem for the Nonlinear Schrödinger Equation in One Space Dimension, Math. Z., Vol. 192, 1986, pp. 637-650. Zbl0617.35025MR847012
- [HNT2] N. Hayashi, K. Nakamitsu and M. Tsutsumi, On Solutions of the Initial Value Problem for the Nonlinear Schrödinger Equation, J. Funct. Anal., Vol. 71, (1987), pp. 218-245. Zbl0657.35033MR880978
- [Ka] T. Kato, On the Cauchy Problem for the (Generalized) Korteweg-de Vries Equation, Adv. in Math. Suppl. Studies; Studies in Appl. Math., Vol. 8, 1983, pp. 93-128. Zbl0549.34001MR759907
- [KF] S.N. Kruzhkov and A.V. Faminskii, Generalized Solutions to the Cauchy Problem for the Korteweg-de Vries Equation, Math. U.S.S.R. Sbornik, vol. 48, 1984, pp. 93-138. Zbl0549.35104MR691986
- [Po] G. Ponce, Regularity of Solutions to Nonlinear Dispersive Equations, J. Diff. Equ., Vol. 78, 1989, pp. 122-135. Zbl0699.35036MR986156
- [Sj] P. Sjölin, Regularity of Solutions to the Schrödinger Equation, Duke Math. J., Vol. 55, 1987, pp. 699-715. Zbl0631.42010MR904948
Citations in EuDML Documents
top- Samer Israwi, Variable depth KdV equations and generalizations to more nonlinear regimes
- Walter A. Strauss, Smoothing of dispersive waves
- Thomas Kappeler, Smoothing of dispersive waves
- Jerry L. Bona, S. M. Sun, Bing-Yu Zhang, Non-homogeneous boundary value problems for the Korteweg–de Vries and the Korteweg–de Vries–Burgers equations in a quarter plane
- Anne de Bouard, Nakao Hayashi, Keiichi Kato, Gevrey regularizing effect for the (generalized) Korteweg-de Vries equation and nonlinear Schrödinger equations
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.