A nonexistence result for a nonlinear equation involving critical Sobolev exponent

A. Carpio Rodriguez; M. Comte; R. Lewandowski

Annales de l'I.H.P. Analyse non linéaire (1992)

  • Volume: 9, Issue: 3, page 243-261
  • ISSN: 0294-1449

How to cite

top

Carpio Rodriguez, A., Comte, M., and Lewandowski, R.. "A nonexistence result for a nonlinear equation involving critical Sobolev exponent." Annales de l'I.H.P. Analyse non linéaire 9.3 (1992): 243-261. <http://eudml.org/doc/78278>.

@article{CarpioRodriguez1992,
author = {Carpio Rodriguez, A., Comte, M., Lewandowski, R.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {semilinear elliptic equations; concentration compactness principle; critical Sobolev exponents; moving plane principle},
language = {eng},
number = {3},
pages = {243-261},
publisher = {Gauthier-Villars},
title = {A nonexistence result for a nonlinear equation involving critical Sobolev exponent},
url = {http://eudml.org/doc/78278},
volume = {9},
year = {1992},
}

TY - JOUR
AU - Carpio Rodriguez, A.
AU - Comte, M.
AU - Lewandowski, R.
TI - A nonexistence result for a nonlinear equation involving critical Sobolev exponent
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1992
PB - Gauthier-Villars
VL - 9
IS - 3
SP - 243
EP - 261
LA - eng
KW - semilinear elliptic equations; concentration compactness principle; critical Sobolev exponents; moving plane principle
UR - http://eudml.org/doc/78278
ER -

References

top
  1. [A.P] F.L. Atkinson and L.A. Peletier, Emden-Fowler Equation Involving Critical Exponent, Journal of non linear analysisT.M.A., Vol. 10, 1986, pp. 755-776. Zbl0662.34024MR851145
  2. [B] A. Bahri, CriticalPoints at Infinity in Some Variational Problems, Longman, 1989. Zbl0676.58021
  3. [B.C] A. Bahri and J.M. Coron, On a Nonlinear Elliptic Equation Involving the Critical Sobolev Exponent. The Effect of the Topology of the Domain, Comm. Pure and Appl. Math., Vol. 41, 1988, pp. 253-294. Zbl0649.35033MR929280
  4. [HB.N] H. Berestycki and L. Nirenberg, Monotonicity, Symmetry and Antisymmetry of Solutions of Semilinear Elliptic Equations, Journal of geometry and physics (to appear). Zbl0698.35031MR1029429
  5. [B.K] H. Brézis and T. Kato, Remarks on the Schrödinger Operator with Singular Complex Potential, Journal maths pures et appl., Vol. 58, 1979, pp. 137-151. Zbl0408.35025MR539217
  6. [B.P] H. Brézis and L.A. Peletier, Asymptotics for Elliptic Equations Involving Critical Growth, Partial Differential Equations and the Calculus of Variations: Essays in honor of E. DeGiori, F. COLOMBINI et al. Eds., Birkhauser, 1989. Zbl0685.35013MR1034005
  7. [D1] E.N. Dancer, On a Nonlinear Elliptic Equation Involving Critical Sobolev Exponent (to appear). 
  8. [D2] W.Y. Ding, Positive Solutions of -Δu=u(N+2)/(N-2) on Contractile Domains (to appear). MR1027983
  9. [G.N.N.] B. Gidas, W.M. Ni and L. Nirenberg, Symmetry and Related Properties via the Maximum Principle, Comm. Math. Phys., Vol. 68, 1979, pp. 209-243. Zbl0425.35020MR544879
  10. [P.L.L] P.L. Lions, The Concentration Compactness Principle in the Calculus of Variations, the Limit Case, Rev. Mat. Iberoamericana, Vol. 1, 1985, pp. 145-201. Zbl0704.49005MR834360
  11. [R.L] R. Lewandowski, Little Holes and Convergence of Solutions of — Δu=u(N+2)/(N-2), Journ. of nonlinear analysisT.M.A., Vol. 14, n° 10, 1990, pp. 873-888. Zbl0713.35008MR1055535
  12. [P] S. Pohozaev, Eigenfunctions of the Equation Δu+λf(u)=0, Dokl. Akad. Nauk S.S.S.R., Vol. 165, 1965, pp. 33-36. Zbl0141.30202MR192184
  13. [S] J. Serrin, A Symmetry Problem in Potential Theory, Arch. Rational Mech. Anal., Vol. 43, 1971, pp. 304-318. Zbl0222.31007MR333220

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.