The large deformation of nonlinearly elastic shells in axisymmetric flows

Massimo Lanza de Cristoforis; Stuart S. Antman

Annales de l'I.H.P. Analyse non linéaire (1992)

  • Volume: 9, Issue: 4, page 433-464
  • ISSN: 0294-1449

How to cite

top

Lanza de Cristoforis, Massimo, and Antman, Stuart S.. "The large deformation of nonlinearly elastic shells in axisymmetric flows." Annales de l'I.H.P. Analyse non linéaire 9.4 (1992): 433-464. <http://eudml.org/doc/78287>.

@article{LanzadeCristoforis1992,
author = {Lanza de Cristoforis, Massimo, Antman, Stuart S.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Schauder estimates; potential theory; axisymmetric shells; incompressible inviscid fluid; monotonicity conditions; global implicit function theorem},
language = {eng},
number = {4},
pages = {433-464},
publisher = {Gauthier-Villars},
title = {The large deformation of nonlinearly elastic shells in axisymmetric flows},
url = {http://eudml.org/doc/78287},
volume = {9},
year = {1992},
}

TY - JOUR
AU - Lanza de Cristoforis, Massimo
AU - Antman, Stuart S.
TI - The large deformation of nonlinearly elastic shells in axisymmetric flows
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1992
PB - Gauthier-Villars
VL - 9
IS - 4
SP - 433
EP - 464
LA - eng
KW - Schauder estimates; potential theory; axisymmetric shells; incompressible inviscid fluid; monotonicity conditions; global implicit function theorem
UR - http://eudml.org/doc/78287
ER -

References

top
  1. [1] R.A. Adams, Sobolev Spaces, Academic Press, 1975. Zbl0314.46030MR450957
  2. [2] J.C. Alexander and S.S. Antman, Global and Local Behavior of Bifurcating Multidimensional Continua of Solutions for Multiparameter Nonlinear Eigenvalue Problems, Arch. Rational Mech. Anal., Vol. 76, 1981, pp. 339-354. Zbl0479.58005MR628173
  3. [3] J.C. Alexander and J.A. Yorke, The Implicit Function Theorem and Global Methods of Cohomology, J. Funct. Anal., Vol. 21, 1976, pp. 330-339. Zbl0321.58006MR397772
  4. [4] S.S. Antman, Nonlinear Problems of Geometrically Exact Shell Theories, in Analytic and Computational Models for Shells, A. K. NOOR, T.BELYTSCHKO and J. C. SIMO Eds., Am. Soc. Mech. Eng., 1989, pp. 109-131. 
  5. [5] S.S. Antman, Nonlinear Problems of Elasticity, 1993 (to appear). Zbl0820.73002MR1323857
  6. [6] M.G. Crandall and P.H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., Vol. 8, 1971, pp. 321-340. Zbl0219.46015MR288640
  7. [7] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1977. Zbl0361.35003MR473443
  8. [8] N.M. Günter, Potential Theory, Ungar, 1967. 
  9. [9] L.V. Kantorovich and G.P. Akilov, Functional Analysis, 2nd. Ed., Pergamon, 1982. Zbl0484.46003MR664597
  10. [10] M. Lanza De Cristoforis, Nonlinear Deformations of Structures in Perfect Flows, Univ. of Maryland, Doctoral dissertation, 1987. 
  11. [11] M. Lanza De Cristoforis, A Note on Conformal Representation in Sobolev Spaces, Complex Variables, 1992 (to appear). Zbl0739.30009MR1284359
  12. [12] M. Lanza De Cristoforis and S.S. Antman, Cavitational Flow Past a Nonlinearly Elastic Panel, Indiana Univ. Math. J., Vol. 39, 1990, pp. 383-412. MR1089044
  13. [13] M. Lanza De Cristoforis and S.S. Antman, The Large Deformation of Elastic Tubes in Two-Dimensional Flows, SIAM J. Math. Anal., Vol. 22, 1991, pp. 1193-1221. Zbl0743.47042MR1112504
  14. [14] J.-L. Lions and E. Magenes, Problemi ai limiti non omogenei III, Ann. Sc. Norm. Sup. Pisa, Vol. 15, 1962, pp. 40-101. MR146526
  15. [15] A. Markouschevich, Sur la représentation conforme des domaines à frontières variables, Recueil Math. (= Mat. Sbornik), ser. 2, Vol. 1, 1936, pp. 863-884. Zbl0016.31005JFM62.1215.04
  16. [16] J. Necas, Les Méthodes Directes en Théorie des Équations Elliptiques, Masson, 1967. MR227584
  17. [17] C. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, 1975. Zbl0298.30014MR507768
  18. [18] J.B. Serrin, Mathematical Principles of Classical Fluid Mechanics, in Handbuch der Physik, Vol. VIII/1, C. TRUESDELL Ed., Springer-Verlag, 1959, pp. 125-263. MR108116
  19. [19] K.-G. Shih and S.S. Antman, Qualitative Properties of Large Buckled States of Spherical Shells, Arch. Rational Mech. Anal., Vol. 93, 1986, pp. 357-384. Zbl0597.73048MR829834
  20. [20] S.L. Sobolev, Partial Differential Equations of Mathematical Physics, Pergamon, 1964. Zbl0123.06508
  21. [21] G.M. Troianello, Elliptic Differential Equations and Obstacle Problems, Plenum, 1987. Zbl0655.35002
  22. [22] S.E. Warschawski, Über das Randverhalten der Abbildungsfunktion bei konformer Abbildung, Math. Z., Vol. 35, 1932, pp. 321-456. Zbl0004.40401MR1545302

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.