Singular minimisers in the calculus of variations : a degenerate form of cavitation

J. Sivaloganathan

Annales de l'I.H.P. Analyse non linéaire (1992)

  • Volume: 9, Issue: 6, page 657-681
  • ISSN: 0294-1449

How to cite

top

Sivaloganathan, J.. "Singular minimisers in the calculus of variations : a degenerate form of cavitation." Annales de l'I.H.P. Analyse non linéaire 9.6 (1992): 657-681. <http://eudml.org/doc/78294>.

@article{Sivaloganathan1992,
author = {Sivaloganathan, J.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {singular minimizers; cavitation; elastic body; energy integral; radial maps; existence of minimizers; smooth variations; stability},
language = {eng},
number = {6},
pages = {657-681},
publisher = {Gauthier-Villars},
title = {Singular minimisers in the calculus of variations : a degenerate form of cavitation},
url = {http://eudml.org/doc/78294},
volume = {9},
year = {1992},
}

TY - JOUR
AU - Sivaloganathan, J.
TI - Singular minimisers in the calculus of variations : a degenerate form of cavitation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1992
PB - Gauthier-Villars
VL - 9
IS - 6
SP - 657
EP - 681
LA - eng
KW - singular minimizers; cavitation; elastic body; energy integral; radial maps; existence of minimizers; smooth variations; stability
UR - http://eudml.org/doc/78294
ER -

References

top
  1. [1] J.M. Ball, Discontinuous Equilibrium Solutions and Cavitation in Nonlinear Elasticity, Phil. Trans. Roy. Soc. London., Vol. A306, 1982, pp. 557-611. Zbl0513.73020MR703623
  2. [2] J.M. Ball and F. Murat, W1,p-Quasiconvexity and Variational Problems for Multiple Integrals, J. Funct. Anal., Vol. 58, 1984, pp.225-253. Zbl0549.46019MR759098
  3. [3] J.M. Ball, J.C. Currie and P.J. Olver, Null Lagrangians, Weak Continuity and Variational Problems of Arbitrary Order, J. Funct. Anal., Vol. 41, 1981, pp. 135-174. Zbl0459.35020MR615159
  4. [4] H. Brezis, J. Coron and E. Lieb, Harmonic Maps with Defects, Comm. Math. Phys., Vol. 107, 1986, pp. 649-705. Zbl0608.58016MR868739
  5. [5] H. Brezis, Sk-valued maps with singularities, Montecatini Lecture Notes, Springer, 1988. Zbl0684.49015MR994017
  6. [6] D.G. Edelen, The null set of the Euler-Lagrange Operator, Arch. Ration. Mech. Anal., Vol. 11, 1962, pp. 117-121. Zbl0125.33002MR150623
  7. [7] L.C. Evans, Quasiconvexity and Partial Regularity in the Calculus of Variations, Arch. Ration. Mech. Anal., Vol. 95, 1986, pp. 227-252. Zbl0627.49006MR853966
  8. [8] N. Fusco and J. Hutchinson, Partial Regularity of Functions Minimising Quasiconvex Integrals, Manuscripta Math., Vol. 54, 1985, pp. 121-143. Zbl0587.49005MR808684
  9. [9] A.N. Gent and P.B. Lindley, Internal Rupture of Bonded Rubber Cylinders in Tension, Proc. Roy. Soc. London, Vol. A249, 1958, pp. 195-205. 
  10. [10] R. Hardt, D. Kinderlehrer and F.H. Lin, Existence and Partial Regularity of Static Liquid Crystal Configurations, Commun. Math. Phys., Vol. 105, 1986, pp. 541-570. Zbl0611.35077MR852090
  11. [11] F. Helein, Applications harmoniques et applications minimisantes entre variétés Riemanniennes, Thèse de Doctorat, École Polytechnique, 1989. 
  12. [12] C.O. Horgan and R. Abeyaratne, A Bifurcation Problem for a Compressible Nonlinearly Elastic Medium: Growth of a Microvoid, J. Elasticity, Vol. 16, 1986, pp. 189-200. Zbl0585.73017MR849671
  13. [13] R.D. James and S.J. Spector, The Formation of Filamentary Voids in Solids, J. Mech. Phys. Sol., Vol. 39, 1991, pp. 783-813. Zbl0761.73020MR1120242
  14. [14] F.H. Lin, Une remarque sur l'application x/|x|, C.R. Acad. Sci. Paris, T. 305, Series I, 1987, pp. 529-531. Zbl0652.58022
  15. [15] S. Muller, Higher Integrability of Determinants and Weak Convergence in L1, J. reine angew. Math., Vol. 412, 1990, pp. 20-34. Zbl0713.49004MR1078998
  16. [16] P.J. Olver and J. Sivaloganathan, The Structure of Null Lagrangians, Nonlinearity, Vol. 1, 1988, pp. 389-398. Zbl0662.49016MR937008
  17. [17] R. Osserman, The Isoperimetric Inequality, Bull. Amer. Math. Soc., Vol. 84, 1978, pp. 1182-1238. Zbl0411.52006MR500557
  18. [18] K.A. Pericak-Spector and S.J. Spector, Nonuniqueness for a Hyperbolic System: Cavitation in Nonlinear Elastodynamics, Arch. Ration. Mech. Anal., Vol. 101, 1988, pp. 293-317. Zbl0651.73005MR930330
  19. [19] P. Podio-Guidugli, G. Vergara Caffarelli and E.G. Virga, Discontinuous Energy Minimisers in Nonlinear Elastostatics: an Example of J. Ball Revisited, J. Elasticity, Vol. 16, 1986, pp. 75-96. Zbl0575.73021MR835366
  20. [20] Polya and Szego, Isoperimetric Inequalities in Mathematical Physics, Princeton University Press, 1951. Zbl0044.38301MR43486
  21. [21] J. Sivaloganathan, Uniqueness of Regular and Singular Equilibria for Spherically Symmetric Problems of Nonlinear Elasticity, Arch. Ration. Mech. Anal., Vol. 96, 1986, pp. 97-136. Zbl0628.73018MR853969
  22. [22] J. Sivaloganathan, A Field Theory Approach to Stability of Equilibria in Radial Elasticity, Math. Proc. Camb. Phil. Soc., Vol. 99, 1986, pp. 589-604. Zbl0612.73013MR830370
  23. [23] J. Sivaloganathan, The Generalised Hamilton-Jacobi Inequality and the Stability of Equilibria in Nonlinear Elasticity, Arch. Ration. Mech. Anal., Vol. 107, No. 4, 1989, pp. 347-369. Zbl0709.73014MR1004715
  24. [24] J. Sivaloganathan, in preparation. 
  25. [25] S. Spector, Linear Deformations as Minimisers of the Energy, preprint. 
  26. [26] C.A. Stuart, Radially Symmetric Cavitation for Hyperelastic Materials, Ann. Inst. Henri Poincaré: Analyse non linéaire, Vol. 2, 1985, pp. 33-66. Zbl0588.73021MR781591
  27. [27] C.A. Stuart, Estimating the Critical Radius for Radially Symmetric Cavitation, preprint E.P.F.L.Lausanne, 1991. Zbl0790.73016MR1218367
  28. [28] F. Meynard, Cavitation dans un milieu hyperélastique, Thèse de Doctorat, École Polytechnique Fédérale de Lausanne, 1990. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.