On solutions of the exterior Dirichlet problem for the minimal surface equation

Ernst Kuwert

Annales de l'I.H.P. Analyse non linéaire (1993)

  • Volume: 10, Issue: 4, page 445-451
  • ISSN: 0294-1449

How to cite

top

Kuwert, Ernst. "On solutions of the exterior Dirichlet problem for the minimal surface equation." Annales de l'I.H.P. Analyse non linéaire 10.4 (1993): 445-451. <http://eudml.org/doc/78312>.

@article{Kuwert1993,
author = {Kuwert, Ernst},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {exterior domains; maximum principle at infinity},
language = {eng},
number = {4},
pages = {445-451},
publisher = {Gauthier-Villars},
title = {On solutions of the exterior Dirichlet problem for the minimal surface equation},
url = {http://eudml.org/doc/78312},
volume = {10},
year = {1993},
}

TY - JOUR
AU - Kuwert, Ernst
TI - On solutions of the exterior Dirichlet problem for the minimal surface equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1993
PB - Gauthier-Villars
VL - 10
IS - 4
SP - 445
EP - 451
LA - eng
KW - exterior domains; maximum principle at infinity
UR - http://eudml.org/doc/78312
ER -

References

top
  1. [1] E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser Verlag, Boston, Basel, Stuttgart, 1984. Zbl0545.49018MR775682
  2. [2] A. Haar, Über das Plateausche Problem, Math. Ann., Vol. 97, 1927, pp. 124-258. Zbl52.0710.02MR1512358JFM52.0710.02
  3. [3] H. Jenkins and J. Serrin, The Dirichlet Problem for the Minimal Surface Equation in Higher Dimension, J. Reine Ang. Math., Vol. 229, 1968, pp. 170-187. Zbl0159.40204MR222467
  4. [4] N. Korevaar, R. Kusner and B. Solomon, The Structure of Complete Embedded Surfaces with Constant Mean Curvature, J. Differential Geometry, Vol. 30, 1989, pp. 465-503. Zbl0726.53007MR1010168
  5. [5] R. Krust, Remarques sur le problème extérieur de Plateau, Duke Math. J., Vol. 59, 1989, pp. 161-173. Zbl0709.49022MR1016882
  6. [6] E. Kuwert, Embedded Solutions for Exterior Minimal Surface Problems, Manuscripta math., Vol. 70, 1990, pp. 51-65. Zbl0717.49034MR1080902
  7. [7] R. Langévin and H. Rosenberg, A Maximum Principle at Infinity for Minimal Surfaces and Applications, Duke Math. J., Vol. 57, 1988, pp. 819-828. Zbl0667.49024MR975123
  8. [8] W.H. Meeks and H. Rosenberg, The Maximum Principle at Infinity for Minimal Surfaces in Flat Three Manifolds, Amhrest preprint, 1988. 
  9. [9] W.H. Meeks and S.T. Yau, The Existence of Embedded Minimal Surfaces and the Problem of Uniqueness, Math. Z., Vol. 179, 1982, pp. 151-168. Zbl0479.49026MR645492
  10. [10] J. Moser, On Harnack's Theorem for Elliptic Differential Equations, Comm. Pure Appl. Math., Vol. 14, 1961, pp. 577-591. Zbl0111.09302MR159138
  11. [11] R. Osserman, A Survey of Minimal Surfaces, Dover publ.2nd ed., New York, 1986. MR852409
  12. [12] R. Schoen, Uniqueness, Symmetry and Embeddedness of Minimal Surfaces, J. Differential Geometry, Vol. 18, 1983, pp. 791-809. Zbl0575.53037MR730928
  13. [13] F. Tomi and R. Ye, The Exterior Plateau Problem, Math. Z., Vol. 205, 1990, pp. 223-245. Zbl0719.53006MR1076131

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.