Decay estimates for spherically symmetric Yang-Mills fields in Minkowski space-time

Pedro Paulo Schirmer

Annales de l'I.H.P. Analyse non linéaire (1993)

  • Volume: 10, Issue: 5, page 481-522
  • ISSN: 0294-1449

How to cite

top

Schirmer, Pedro Paulo. "Decay estimates for spherically symmetric Yang-Mills fields in Minkowski space-time." Annales de l'I.H.P. Analyse non linéaire 10.5 (1993): 481-522. <http://eudml.org/doc/78314>.

@article{Schirmer1993,
author = {Schirmer, Pedro Paulo},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Yang-Mills fields; Coulomb charges; dipole radiation},
language = {eng},
number = {5},
pages = {481-522},
publisher = {Gauthier-Villars},
title = {Decay estimates for spherically symmetric Yang-Mills fields in Minkowski space-time},
url = {http://eudml.org/doc/78314},
volume = {10},
year = {1993},
}

TY - JOUR
AU - Schirmer, Pedro Paulo
TI - Decay estimates for spherically symmetric Yang-Mills fields in Minkowski space-time
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1993
PB - Gauthier-Villars
VL - 10
IS - 5
SP - 481
EP - 522
LA - eng
KW - Yang-Mills fields; Coulomb charges; dipole radiation
UR - http://eudml.org/doc/78314
ER -

References

top
  1. [1] R. Bartnik, Private Communication, Proc. Hungarian General Relativity Workshop, Tihany, Sept. 1989, Ed. Zoltán Perjes (to appear). MR1394692
  2. [2] D. Christodoulou, Solutions globales des équations de champs de Yang-Mills, C. R. Acad. Sci. Paris, T. 293, Series A, 1981, p. 39. Zbl0477.58038MR637111
  3. [3] D. Christodoulou and S. Klainerman, Asymptotic Properties of Linear Field Equations in Minkowski Space, Comm. Pure and Appl. Math., Vol. 43, 1990, pp. 137-199. Zbl0715.35076MR1038141
  4. [4] S. Coleman, There are No Classical Glueballs, Comm. Math. Phys., Vol. 55, 1977, p. 113. Zbl0352.53024MR449433
  5. [5] S. Deser, Absence of Static Solutions in Source-Free Yang-Mills Theory, Phys. Letters, Vol. 64B, 1976, p. 463. 
  6. [6] D. Eardley and V. Moncrief, The Global Existence of Yang-Mill-Higgs Fields in 4- dimensional Minkowski Space, Comm. Math. Phys., Vol. 83, 1982, p. 171. Zbl0496.35061MR649158
  7. [7] P. Forgács and N. Manton, Space-Time Symmetries in Gauge Theories, Comm. Math. Phys., Vol. 72, 1980, p. 15. MR573815
  8. [8] Gu Chaohao and Hu Hesheng, On The Spherically Symmetric Gauge Fields, Comm. Math. Phys., Vol. 79, 1981, p. 75. Zbl0526.53067MR609229
  9. [9] R.T. Glassey and W.A. Strauss, Decay of Classical Yang-Mills Fields, Commun. Math. Phys., Vol. 65, 1979, p. 1. Zbl0402.35069MR526974
  10. [10] R.T. Glassey and W.A. Strauss, Some Global Solutions of the Yang-Mills Equations in Minkowski Space, Comm. Math. Phys., Vol. 81, 1981, pp. 171-187. Zbl0496.35055MR632755
  11. [11] R.T. Glassey and W.A. Strauss, The Scattering of Certain Yang-Mills Fields, Commun. Math. Phys., Vol. 89, 1983, pp. 465-482. Zbl0527.35066MR713681
  12. [12] J. Ginibre and G. Velo, The Cauchy Problem for Coupled Yang-Mills and Scalar Fields in the Temporal Gauge, Commun. Math. Phys., Vol. 82, 1981, pp. 1-28. Zbl0486.35048MR638511
  13. [13] J. Harnad, S. Shnider and L. Vinet,Group Actions on Principal Bundles and Invariance Conditions for Gange FieldsJ. Math. Phys., Vol. 21, 1980, p. 2719. Zbl0454.55010MR597586
  14. [14] R. Jackiw, Gauge fields and Symmetries, Suppl. Acta Physica Austriaca, Schlamming lect. notes, Ed. P. Urban. 
  15. [15] A. Jaffe, Vortices and Monopoles, Clifford Taubes, Birkhäuser Progress in Physics PPh2, Birkhäuser, 1980. Zbl0457.53034MR614447
  16. [16] S. Klainerman, Uniform Decay Estimates and the Lorentz Invariance of the Classical Wave Equation, Comm. Pure Appl. Math., Vol. 37, 1985, p. 321. Zbl0635.35059MR784477
  17. [17] S. Klainerman, The Null Condition and Global Existence to Non-linear Wave Equations, Lectures in Applied Mathematics, Vol. 23, 1986, Ed. B. Nicolaenko. Zbl0599.35105MR837683
  18. [18] S. Klainerman, Remarks on the Global Sobolev Inequalities in Minkowski, Space, Comm. Pure and Appl. Math., Vol. 40, 1987, p. 111. Zbl0686.46019MR865359
  19. [19] J. Mckinnon, The Spherically Symmetric Einstein-Yang-Mills Equations, HonoursThesis, ANU, Canberra, Nov. 1987. 
  20. [20] V.N. Romanov, A.S. Schwarz and Yu.S. Tyupkin, On Spherically Symmetric Fields in Gauge Theories, Nuclear Physics, Vol. B130, 1977, pp. 209-220. MR496156
  21. [21] A. Schwarz, On Symmetric Gauge Fields, Comm. Math. Phys., Vol. 56, 1977, p. 79. Zbl0361.53030MR457641
  22. [22] P.P. Schirmer, Global Existence for Spherically Symmetric Yang-Mills Fields on 3 + 1 Space-Time Dimensions, Doctoral dissertation, New York University, 1990. 
  23. [23] H.C. Wang, On Invariant Connections over a Principal Fibre Bundle, Nagoya Math. J., Vol. 13, 1958, pp. 1-19. Zbl0086.36502MR107276

NotesEmbed ?

top

You must be logged in to post comments.