Decay estimates for spherically symmetric Yang-Mills fields in Minkowski space-time

Pedro Paulo Schirmer

Annales de l'I.H.P. Analyse non linéaire (1993)

  • Volume: 10, Issue: 5, page 481-522
  • ISSN: 0294-1449

How to cite

top

Schirmer, Pedro Paulo. "Decay estimates for spherically symmetric Yang-Mills fields in Minkowski space-time." Annales de l'I.H.P. Analyse non linéaire 10.5 (1993): 481-522. <http://eudml.org/doc/78314>.

@article{Schirmer1993,
author = {Schirmer, Pedro Paulo},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Yang-Mills fields; Coulomb charges; dipole radiation},
language = {eng},
number = {5},
pages = {481-522},
publisher = {Gauthier-Villars},
title = {Decay estimates for spherically symmetric Yang-Mills fields in Minkowski space-time},
url = {http://eudml.org/doc/78314},
volume = {10},
year = {1993},
}

TY - JOUR
AU - Schirmer, Pedro Paulo
TI - Decay estimates for spherically symmetric Yang-Mills fields in Minkowski space-time
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1993
PB - Gauthier-Villars
VL - 10
IS - 5
SP - 481
EP - 522
LA - eng
KW - Yang-Mills fields; Coulomb charges; dipole radiation
UR - http://eudml.org/doc/78314
ER -

References

top
  1. [1] R. Bartnik, Private Communication, Proc. Hungarian General Relativity Workshop, Tihany, Sept. 1989, Ed. Zoltán Perjes (to appear). MR1394692
  2. [2] D. Christodoulou, Solutions globales des équations de champs de Yang-Mills, C. R. Acad. Sci. Paris, T. 293, Series A, 1981, p. 39. Zbl0477.58038MR637111
  3. [3] D. Christodoulou and S. Klainerman, Asymptotic Properties of Linear Field Equations in Minkowski Space, Comm. Pure and Appl. Math., Vol. 43, 1990, pp. 137-199. Zbl0715.35076MR1038141
  4. [4] S. Coleman, There are No Classical Glueballs, Comm. Math. Phys., Vol. 55, 1977, p. 113. Zbl0352.53024MR449433
  5. [5] S. Deser, Absence of Static Solutions in Source-Free Yang-Mills Theory, Phys. Letters, Vol. 64B, 1976, p. 463. 
  6. [6] D. Eardley and V. Moncrief, The Global Existence of Yang-Mill-Higgs Fields in 4- dimensional Minkowski Space, Comm. Math. Phys., Vol. 83, 1982, p. 171. Zbl0496.35061MR649158
  7. [7] P. Forgács and N. Manton, Space-Time Symmetries in Gauge Theories, Comm. Math. Phys., Vol. 72, 1980, p. 15. MR573815
  8. [8] Gu Chaohao and Hu Hesheng, On The Spherically Symmetric Gauge Fields, Comm. Math. Phys., Vol. 79, 1981, p. 75. Zbl0526.53067MR609229
  9. [9] R.T. Glassey and W.A. Strauss, Decay of Classical Yang-Mills Fields, Commun. Math. Phys., Vol. 65, 1979, p. 1. Zbl0402.35069MR526974
  10. [10] R.T. Glassey and W.A. Strauss, Some Global Solutions of the Yang-Mills Equations in Minkowski Space, Comm. Math. Phys., Vol. 81, 1981, pp. 171-187. Zbl0496.35055MR632755
  11. [11] R.T. Glassey and W.A. Strauss, The Scattering of Certain Yang-Mills Fields, Commun. Math. Phys., Vol. 89, 1983, pp. 465-482. Zbl0527.35066MR713681
  12. [12] J. Ginibre and G. Velo, The Cauchy Problem for Coupled Yang-Mills and Scalar Fields in the Temporal Gauge, Commun. Math. Phys., Vol. 82, 1981, pp. 1-28. Zbl0486.35048MR638511
  13. [13] J. Harnad, S. Shnider and L. Vinet,Group Actions on Principal Bundles and Invariance Conditions for Gange FieldsJ. Math. Phys., Vol. 21, 1980, p. 2719. Zbl0454.55010MR597586
  14. [14] R. Jackiw, Gauge fields and Symmetries, Suppl. Acta Physica Austriaca, Schlamming lect. notes, Ed. P. Urban. 
  15. [15] A. Jaffe, Vortices and Monopoles, Clifford Taubes, Birkhäuser Progress in Physics PPh2, Birkhäuser, 1980. Zbl0457.53034MR614447
  16. [16] S. Klainerman, Uniform Decay Estimates and the Lorentz Invariance of the Classical Wave Equation, Comm. Pure Appl. Math., Vol. 37, 1985, p. 321. Zbl0635.35059MR784477
  17. [17] S. Klainerman, The Null Condition and Global Existence to Non-linear Wave Equations, Lectures in Applied Mathematics, Vol. 23, 1986, Ed. B. Nicolaenko. Zbl0599.35105MR837683
  18. [18] S. Klainerman, Remarks on the Global Sobolev Inequalities in Minkowski, Space, Comm. Pure and Appl. Math., Vol. 40, 1987, p. 111. Zbl0686.46019MR865359
  19. [19] J. Mckinnon, The Spherically Symmetric Einstein-Yang-Mills Equations, HonoursThesis, ANU, Canberra, Nov. 1987. 
  20. [20] V.N. Romanov, A.S. Schwarz and Yu.S. Tyupkin, On Spherically Symmetric Fields in Gauge Theories, Nuclear Physics, Vol. B130, 1977, pp. 209-220. MR496156
  21. [21] A. Schwarz, On Symmetric Gauge Fields, Comm. Math. Phys., Vol. 56, 1977, p. 79. Zbl0361.53030MR457641
  22. [22] P.P. Schirmer, Global Existence for Spherically Symmetric Yang-Mills Fields on 3 + 1 Space-Time Dimensions, Doctoral dissertation, New York University, 1990. 
  23. [23] H.C. Wang, On Invariant Connections over a Principal Fibre Bundle, Nagoya Math. J., Vol. 13, 1958, pp. 1-19. Zbl0086.36502MR107276

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.