On the vanishing viscosity approximation to the Cauchy problem for a 2 × 2 system of conservation laws

Bruno Rubino

Annales de l'I.H.P. Analyse non linéaire (1993)

  • Volume: 10, Issue: 6, page 627-656
  • ISSN: 0294-1449

How to cite

top

Rubino, Bruno. "On the vanishing viscosity approximation to the Cauchy problem for a 2 × 2 system of conservation laws." Annales de l'I.H.P. Analyse non linéaire 10.6 (1993): 627-656. <http://eudml.org/doc/78320>.

@article{Rubino1993,
author = {Rubino, Bruno},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {vanishing viscosity approximation; invariant domains; existence of infinitely many entropies; compensated compactness},
language = {eng},
number = {6},
pages = {627-656},
publisher = {Gauthier-Villars},
title = {On the vanishing viscosity approximation to the Cauchy problem for a 2 × 2 system of conservation laws},
url = {http://eudml.org/doc/78320},
volume = {10},
year = {1993},
}

TY - JOUR
AU - Rubino, Bruno
TI - On the vanishing viscosity approximation to the Cauchy problem for a 2 × 2 system of conservation laws
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1993
PB - Gauthier-Villars
VL - 10
IS - 6
SP - 627
EP - 656
LA - eng
KW - vanishing viscosity approximation; invariant domains; existence of infinitely many entropies; compensated compactness
UR - http://eudml.org/doc/78320
ER -

References

top
  1. [1] G.Q. Chen, X. Ding and P. Luo, Convergence of the Lax-Friedrichs Scheme for Isentropic Gas Dynamics, I, Acta Math. Sci., Vol. 5, 1985, pp. 415-432; II, Acta Math. Sci., Vol. 5, 1985, pp 433-472. Zbl0643.76084
  2. [2] G.Q. Chen, Convergence of the Lax-Friedrichs Scheme for Isentropic Gas Dynamics, III, Acta Math. Sci., Vol. 6, 1986, pp. 75-120. Zbl0643.76086
  3. [3] K.N. Chueh, C.C. Conley and J.A. Smoller, Positively Invariant Regions for Systems of Non-Linear Diffusion Equations, Indiana Univ. Math. J., Vol. 26, 1977, pp. 372-411. Zbl0368.35040
  4. [4] R. Courant and D. Hilbert, Methods of Mathematicals Physics II: Partial Differential Equations, Wiley and Sons, 1962. Zbl0099.29504
  5. [5] R.J. Diperna, Compensated Compactness and General Systems of Conservation Laws, Trans. Amer. Math. Soc., Vol. 292, 1985, pp. 383-420. Zbl0606.35052
  6. [6] R.J. Diperna, Convergence of Approximate Solutions to Conservation Laws, Arch. Rational Mech. Anal., Vol. 82, 1983, pp. 27-70. Zbl0519.35054
  7. [7] R.J. Diperna, Convergence of the Viscosity Method for Isentropic Gas Dynamics, Comm. Math. Phys., Vol. 91, 1983, pp. 1-30. Zbl0533.76071
  8. [8] R.J. Diperna, Measure-Valued Solutions to Conservation Laws, Arch. Rational Mech. Anal., Vol. 88, 1985, pp. 223-270. Zbl0616.35055
  9. [9] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice Hall, 1964. Zbl0144.34903
  10. [10] G. Glimm, The Interaction of Non-Linear Hyperbolic Waves, Comm. Pure Appl. Math., Vol. 41, 1988, pp. 569-590. Zbl0635.35067
  11. [11] L. Hörmander, Non-Linear Hyperbolic Differential Equations, Lectures notes, 1986- 1987, Lund University, Sweden, 1988, mineographied notes. 
  12. [12] E. Isaacson, D. Marchesin, B. Plohr and B. Temple, The Riemann Problem Near a Hyperbolic Singularity: the Classification of Solutions of Quadratic Riemann Problems I, S.I.A.M. J. Appl. Math., Vol. 48, 1988, pp. 1009-1032. Zbl0688.35056
  13. [13] E. Isaacson and B. Temple, The Classification of Solutions of Quadratic Riemann Problems II, S.I.A.M. J. Appl. Math., Vol. 48, 1988, pp. 1287-1301; III, S.I.A.M. J. Appl. Math., Vol. 48, 1988, pp. 1302-1318. Zbl0688.35057
  14. [14] P.-T. Kan, On the Cauchy Problem of a 2 × 2 Systems of Non-Strictly Hyperbolic Conservation Laws, Ph.D. Thesis, Courant Institute of Math. Sciences, N.Y. University, 1989. 
  15. [15] B.L. Keyfitz and H.C. Kranzer, A System of Non-Strictly Hyperbolic Conservation Laws Arising in Elasticity Theory, Arch. Rational Mech. Anal., Vol. 72, 1980, pp. 219- 241. Zbl0434.73019
  16. [16] S. Kružkov, First Order Quasi-Linear Equations with Several Space Variables, Mat. Sb., Vol. 123, 1970, pp. 228-255. 
  17. [17] P.D. Lax, Asymptotic Solutions of Oscillatory Initial value Problems, Duke Math. J., Vol. 24, 1957, pp. 627-646. Zbl0083.31801
  18. [18] P.D. Lax, Shock Waves and Entropy, in Contributions to Nonlinear Functional Analysis, E. A. ZARANTONELLO Ed., Academic Press, 1971, pp. 603-634. Zbl0268.35014
  19. [19] P.D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, S.I.A.M., Philadelphia, 1973. Zbl0268.35062
  20. [20] T.P. Liu, Zero Dissipative Limit for Conservation Laws, in Proceedings of the Conference on Non-linear Variational Problems and Partial Differential Equations, Isola d'Elba, 1990 (to appear). 
  21. [21] P. Marcati and A. Milani, The One-Dimensional Darcy's Law as the Limit of a Compressible Euler Flow, J. Differential Equations, 1990, pp. 129-147. Zbl0715.35065
  22. [22] F. Murat, Compacité par compensation, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Vol. 5, 1978, pp. 489-507. Zbl0399.46022
  23. [23] I.G. Petrovskii, Partial Differential Equations, Iliffe Books, 1967. Zbl0163.11706
  24. [24] D.G. Schaeffer and M. Shearer, The Classification of 2 × 2 Systems of Non-Strictly Hyperbolic Conservation Laws, with Application to Oil Recovery, Comm. Pure Appl. Math., Vol. 40, 1987, pp. 141-178. Zbl0673.35073
  25. [25] D.G. Schaeffer and M. Shearer, Riemann Problems for Non-Strictly Hyperbolic 2 x 2 Systems of Conservation Laws, Trans. Amer. Math. Soc., Vol. 304, 1987, pp. 267- 306. Zbl0656.35081
  26. [26] D. Serre, La compacité par compensation pour les systèmes hyperboliques non linéaires de deux équations a une dimension d'espace, J. Math. Pures Appl., Vol. 65, 1986, pp. 423-468. Zbl0601.35070
  27. [27] J.A. Smoller, Shock Waves and Reaction Diffusion Equations, Springer Verlag, 1983. Zbl0508.35002
  28. [28] S.L. Sobolev, Partial Differential Equations of Mathematical Physics, Pergamon Press, 1964. Zbl0123.06508
  29. [29] L. Tartar, Compensated Compactness and Applications to Partial Differential Equations, in Nonlinear Analysis and Mechanics: Heriott-Watt Symposium, IV, Research Notes in Math., 1979, pp. 136-210. Zbl0437.35004
  30. [30] B. Temple, Global Existence of the Cauchy Problem for a Class of 2 x 2 Non-Strictly Hyperbolic Conservation Laws, Adv. in Appl. Math., Vol. 3, 1982, pp. 355-375. Zbl0508.76107

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.