Geodesics on product lorentzian manifolds

F. Giannoni; A. Masiello

Annales de l'I.H.P. Analyse non linéaire (1995)

  • Volume: 12, Issue: 1, page 27-60
  • ISSN: 0294-1449

How to cite

top

Giannoni, F., and Masiello, A.. "Geodesics on product lorentzian manifolds." Annales de l'I.H.P. Analyse non linéaire 12.1 (1995): 27-60. <http://eudml.org/doc/78351>.

@article{Giannoni1995,
author = {Giannoni, F., Masiello, A.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Lorentz metrics; critical point theory; geodesics},
language = {eng},
number = {1},
pages = {27-60},
publisher = {Gauthier-Villars},
title = {Geodesics on product lorentzian manifolds},
url = {http://eudml.org/doc/78351},
volume = {12},
year = {1995},
}

TY - JOUR
AU - Giannoni, F.
AU - Masiello, A.
TI - Geodesics on product lorentzian manifolds
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1995
PB - Gauthier-Villars
VL - 12
IS - 1
SP - 27
EP - 60
LA - eng
KW - Lorentz metrics; critical point theory; geodesics
UR - http://eudml.org/doc/78351
ER -

References

top
  1. [1] V. Benci and D. Fortunato, On the existence of infinitely many geodesics on space-time manifolds, Adv. Math., to appear. Zbl0808.58016MR1275190
  2. [2] V. Benci, D. Fortunato and A. Masiello, Geodesics on Lorentzian manifolds, preprint Dip. Mat. Univ. Bari, 1992. Zbl0932.58011
  3. [3] V. Benci, D. Fortunato and A. Masiello, On the geodesic connectedeness of Lorentzian manifolds, Math. Z, to appear. Zbl0807.53054MR1292174
  4. [4] E. Fadell, Lectures in chomological index theories of G-spaces with applications to critical point theory, Sem. Dip. Mat. Universita' della Calabria, Cosenza, 1985. MR801933
  5. [5] E. Fadell and A. Husseini, Relative category and homology products, preprint. 
  6. [6] G. Fournier, D. Lupo, M. Ramos and M. Willem, Limit relative category and critical point theory, report Inst. Math. Pure Appl., Université Catholique de Louvain, 1990. Zbl0794.58007
  7. [7] G. Fournier and M. Willem, Relative category and the calculus of variations, in "Variational problems", H. Beresticky, J. M. Coron and I. Ekeland, eds., Birkhäuser, Basel, 1990. Zbl0719.58010MR1205148
  8. [8] R. Geroch, Domains of dependence, J. Math. Phys., Vol. 11, 1970, pp..437-449. Zbl0189.27602
  9. [9] F. Giannoni and A. Masiello, On the existence of geodesics on stationary Lorentz manifolds with convex boundary, Jour. Funct. Analysis, Vol. 101, 1991, pp. 340-369. Zbl0756.53029MR1136940
  10. [10] J. Milnor, Morse Theory, Ann. Math. Studies, Vol. 51, Princeton1963. Zbl0108.10401
  11. [11] J. Nash, The embedding problem for Riemannian manifolds, Ann. Math., Vol. 63, 1956, pp. 20-63. Zbl0070.38603
  12. [12] B. O'Neill, Semi-Riemannian geometry with applications to relativity, Academic Press, New York-London, 1983. Zbl0531.53051MR719023
  13. [13] R.S. Palais, Critical point theory and the minimax principle, Global Anal., Proc. Sym. Pure Math. Amer. Math. Soc., Vol. 15, 1970, pp. 185-202. Zbl0212.28902MR264712
  14. [14] R. Penrose, Techniques of differential topology in relativity, S.I.A.M., Philadelphia, 1972. Zbl0321.53001MR469146
  15. [15] P.H. Rabinowitz, A minimax principle and application to elliptic partial differential equations, Proc. "Nonlinear Partial Differential Equations", Lect. Note Math., Vol. 648, Springer, Berlin-Heidelberg-New York, 1978. Zbl0377.35020MR488127
  16. [16] J.T. Schwartz, Nonlinear functional analysis, Gordon and Breach, New York, 1969. Zbl0203.14501MR433481
  17. [17] A. Szulkin, A relative category and applications to critical point theory for strongly indefinite functionals, Nonlin. Anal. T.M.A., Vol. 15, n° 8, 1990, pp. 725-7339. Zbl0719.58011MR1074951

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.