Geodesics on product lorentzian manifolds
Annales de l'I.H.P. Analyse non linéaire (1995)
- Volume: 12, Issue: 1, page 27-60
- ISSN: 0294-1449
Access Full Article
topHow to cite
topGiannoni, F., and Masiello, A.. "Geodesics on product lorentzian manifolds." Annales de l'I.H.P. Analyse non linéaire 12.1 (1995): 27-60. <http://eudml.org/doc/78351>.
@article{Giannoni1995,
author = {Giannoni, F., Masiello, A.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Lorentz metrics; critical point theory; geodesics},
language = {eng},
number = {1},
pages = {27-60},
publisher = {Gauthier-Villars},
title = {Geodesics on product lorentzian manifolds},
url = {http://eudml.org/doc/78351},
volume = {12},
year = {1995},
}
TY - JOUR
AU - Giannoni, F.
AU - Masiello, A.
TI - Geodesics on product lorentzian manifolds
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1995
PB - Gauthier-Villars
VL - 12
IS - 1
SP - 27
EP - 60
LA - eng
KW - Lorentz metrics; critical point theory; geodesics
UR - http://eudml.org/doc/78351
ER -
References
top- [1] V. Benci and D. Fortunato, On the existence of infinitely many geodesics on space-time manifolds, Adv. Math., to appear. Zbl0808.58016MR1275190
- [2] V. Benci, D. Fortunato and A. Masiello, Geodesics on Lorentzian manifolds, preprint Dip. Mat. Univ. Bari, 1992. Zbl0932.58011
- [3] V. Benci, D. Fortunato and A. Masiello, On the geodesic connectedeness of Lorentzian manifolds, Math. Z, to appear. Zbl0807.53054MR1292174
- [4] E. Fadell, Lectures in chomological index theories of G-spaces with applications to critical point theory, Sem. Dip. Mat. Universita' della Calabria, Cosenza, 1985. MR801933
- [5] E. Fadell and A. Husseini, Relative category and homology products, preprint.
- [6] G. Fournier, D. Lupo, M. Ramos and M. Willem, Limit relative category and critical point theory, report Inst. Math. Pure Appl., Université Catholique de Louvain, 1990. Zbl0794.58007
- [7] G. Fournier and M. Willem, Relative category and the calculus of variations, in "Variational problems", H. Beresticky, J. M. Coron and I. Ekeland, eds., Birkhäuser, Basel, 1990. Zbl0719.58010MR1205148
- [8] R. Geroch, Domains of dependence, J. Math. Phys., Vol. 11, 1970, pp..437-449. Zbl0189.27602
- [9] F. Giannoni and A. Masiello, On the existence of geodesics on stationary Lorentz manifolds with convex boundary, Jour. Funct. Analysis, Vol. 101, 1991, pp. 340-369. Zbl0756.53029MR1136940
- [10] J. Milnor, Morse Theory, Ann. Math. Studies, Vol. 51, Princeton1963. Zbl0108.10401
- [11] J. Nash, The embedding problem for Riemannian manifolds, Ann. Math., Vol. 63, 1956, pp. 20-63. Zbl0070.38603
- [12] B. O'Neill, Semi-Riemannian geometry with applications to relativity, Academic Press, New York-London, 1983. Zbl0531.53051MR719023
- [13] R.S. Palais, Critical point theory and the minimax principle, Global Anal., Proc. Sym. Pure Math. Amer. Math. Soc., Vol. 15, 1970, pp. 185-202. Zbl0212.28902MR264712
- [14] R. Penrose, Techniques of differential topology in relativity, S.I.A.M., Philadelphia, 1972. Zbl0321.53001MR469146
- [15] P.H. Rabinowitz, A minimax principle and application to elliptic partial differential equations, Proc. "Nonlinear Partial Differential Equations", Lect. Note Math., Vol. 648, Springer, Berlin-Heidelberg-New York, 1978. Zbl0377.35020MR488127
- [16] J.T. Schwartz, Nonlinear functional analysis, Gordon and Breach, New York, 1969. Zbl0203.14501MR433481
- [17] A. Szulkin, A relative category and applications to critical point theory for strongly indefinite functionals, Nonlin. Anal. T.M.A., Vol. 15, n° 8, 1990, pp. 725-7339. Zbl0719.58011MR1074951
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.