Normal form and global solutions for the Klein-Gordon-Zakharov equations

T. Ozawa; K. Tsutaya; Y. Tsutsumi

Annales de l'I.H.P. Analyse non linéaire (1995)

  • Volume: 12, Issue: 4, page 459-503
  • ISSN: 0294-1449

How to cite

top

Ozawa, T., Tsutaya, K., and Tsutsumi, Y.. "Normal form and global solutions for the Klein-Gordon-Zakharov equations." Annales de l'I.H.P. Analyse non linéaire 12.4 (1995): 459-503. <http://eudml.org/doc/78366>.

@article{Ozawa1995,
author = {Ozawa, T., Tsutaya, K., Tsutsumi, Y.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Cauchy problem; Klein-Gordon-Zakharov equations; small initial data; unique global solutions; method of normal forms},
language = {eng},
number = {4},
pages = {459-503},
publisher = {Gauthier-Villars},
title = {Normal form and global solutions for the Klein-Gordon-Zakharov equations},
url = {http://eudml.org/doc/78366},
volume = {12},
year = {1995},
}

TY - JOUR
AU - Ozawa, T.
AU - Tsutaya, K.
AU - Tsutsumi, Y.
TI - Normal form and global solutions for the Klein-Gordon-Zakharov equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1995
PB - Gauthier-Villars
VL - 12
IS - 4
SP - 459
EP - 503
LA - eng
KW - Cauchy problem; Klein-Gordon-Zakharov equations; small initial data; unique global solutions; method of normal forms
UR - http://eudml.org/doc/78366
ER -

References

top
  1. [1] A. Bachelot, Problème de Cauchy globale pour des système de Dirac-Klein-Gordon, Ann. Inst. Henri Poincaré, Phys. Théor., Vol. 48, 1988, pp. 387-422. Zbl0672.35071MR969173
  2. [2] J. Bergh and J. Löfström, Interpolation Spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1976. Zbl0344.46071MR482275
  3. [3] H. Brézis and T. Gallouët, Non linear Schrödinger evolution equations, Nonlinear Analysis, TMA, Vol. 4, 1980, pp. 677-681. Zbl0451.35023MR582536
  4. [4] A. Friedman, Partial Differential Equations, Holt Rinehart and Winston, New York, 1969. Zbl0224.35002MR445088
  5. [5] V. Georgiev, Global solutions of the system of wave and Klein-Gordon equations, Math. Z., Vol. 203, 1990, pp. 683-698. Zbl0671.35052MR1044072
  6. [6] V. Georgiev, Small amplitude solutions of the Maxwell-Dirac equations, Indiana Univ. Math. J., Vol. 40, 1991, pp. 845-883. Zbl0754.35171MR1129332
  7. [7] V. Georgiev, Decay estimates for the Klein-Gordon equations, Commun. Part. Diff. Eqs., Vol. 17, 1992, pp. 1111-1139. Zbl0767.35068MR1179280
  8. [8] J. Ginibre and G. Velo, Time decay of finite energy solutions of the non linear Klein-Gordon and Schrödinger equations, Ann. Inst. Henri Poincaré, Phys. Théor., Vol. 43, 1985, pp. 399-442. Zbl0595.35089MR824083
  9. [9] S. Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave equations, Comm. Pure Appl. Math., Vol. 38, 1985, pp. 321-332. Zbl0635.35059MR784477
  10. [10] S. Klainerman, The null condition and global existence to nonlinear wave equations, Lect. in Appl. Math., Vol. 23, 1986, pp. 293-326. Zbl0599.35105MR837683
  11. [11] H. Pecher, Nonlinear small data scattering for the wave and Klein-Gordon equation, Math. Z., Vol. 185, 1984, pp. 261-270. Zbl0538.35063MR731347
  12. [12] J. Shatah, Normal forms and quadratic nonlinear Klein-Gordon equations, Comm. Pure Appl. Math., Vol. 38, 1985, pp. 685-696. Zbl0597.35101MR803256
  13. [13] T. Sideris, Decay estimates for the three-dimensional inhomogeneous Klein-Gordon equation and applications, Commun. Part. Diff. Eqs., Vol. 14, 1989, pp. 1421-1455. Zbl0696.35015MR1022992
  14. [14] W.A. Strauss, Nonlinear Wave Equations, CBMS Regional Conference Series in Mathematics, no. 73, Amer. Math. Soc., Providence, RI, 1989. Zbl0714.35003MR1032250
  15. [15] S.G. Thornhill and D. ter Haar, Langmuir turbulence and modulational instability, Phys. Reports (Sect. C of Phys. Lett.), Vol. 43, 1978, pp. 43-99. 
  16. [16] J.C.H. Simon and E. Taflin, The Cauchy problem for non-linear Klein-Gordon equations, Commun. Math. Phys., Vol. 152, 1993, pp. 433-478. Zbl0783.35066MR1213298

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.