Nonlinear oblique boundary value problems for hessian equations in two dimensions
Annales de l'I.H.P. Analyse non linéaire (1995)
- Volume: 12, Issue: 5, page 507-575
- ISSN: 0294-1449
Access Full Article
topHow to cite
topUrbas, John. "Nonlinear oblique boundary value problems for hessian equations in two dimensions." Annales de l'I.H.P. Analyse non linéaire 12.5 (1995): 507-575. <http://eudml.org/doc/78367>.
@article{Urbas1995,
author = {Urbas, John},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {unique admissible solution; subsolution; nolinear boundary condition},
language = {eng},
number = {5},
pages = {507-575},
publisher = {Gauthier-Villars},
title = {Nonlinear oblique boundary value problems for hessian equations in two dimensions},
url = {http://eudml.org/doc/78367},
volume = {12},
year = {1995},
}
TY - JOUR
AU - Urbas, John
TI - Nonlinear oblique boundary value problems for hessian equations in two dimensions
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1995
PB - Gauthier-Villars
VL - 12
IS - 5
SP - 507
EP - 575
LA - eng
KW - unique admissible solution; subsolution; nolinear boundary condition
UR - http://eudml.org/doc/78367
ER -
References
top- [1] L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations I. Monge-Ampère equation, Comm. Pure Appl. Math., Vol. 37, 1984, pp. 369-402. Zbl0598.35047MR739925
- [2] L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations III. Functions of the eigenvalues of the Hessian, Acta Math., Vol. 155, 1985, pp. 261-301. Zbl0654.35031MR806416
- [3] S.Y. Cheng and S.T. Yau, On the regularity of the Monge-Ampère equation det (∂2u ∂xi∂xj) = F(x,u), Comm. Pure Appl. Math., Vol. 30, 1977, pp. 41-68. Zbl0347.35019MR437805
- [4] Ph. Delanoë, Classical solvability in dimension two of the second boundary value problem associated with the Monge-Ampère operator, Ann. Inst. Henri Poincarè, Analyse Non Linèaire, Vol. 8, 1991, pp. 443-457. Zbl0778.35037MR1136351
- [5] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, Second edition, 1983. Zbl0562.35001MR737190
- [6] N.M. Ivochkina, Classical solvability of the Dirichlet problem for the Monge-Ampère equation, Zap. Naučn. Sem. Leningrad Otdel. Mat. Inst. Steklov. (LOMI), Vol. 131, 1983, pp. 72-79. Zbl0522.35028MR718679
- [7] G.M. Lieberman, Two-dimensional nonlinear boundary value problems for elliptic equations, Trans. Amer. Math. Soc., Vol. 300, 1987, pp. 287-295. Zbl0627.35038MR871676
- [8] G.M. Lieberman and N.S. Trudinger, Nonlinear oblique boundary value problems for nonlinear elliptic equations, Trans. Amer. Math. Soc., Vol. 295, 1986, pp. 509-546. Zbl0619.35047MR833695
- [9] P.L. Lions, Sur les équations de Monge-Ampère I, Manuscripta Math., Vol. 41, 1983, pp. 1-44. Zbl0509.35036MR689131
- [10] P.L. Lions, N.S. Trudinoer and J.I.E. Urbas, The Neumann problem for equations of Monge-Ampère type, Comm. Pure Appl. Math., Vol. 39, 1986, pp. 539-563. Zbl0604.35027MR840340
- [11] A.V. Pogorelov, Monge-Ampère equations of elliptic type, Groningen, Noordhoff, 1964. Zbl0133.04902MR180763
- [12] A.V. Pogorelov, The Minkowski multidimensional problem, J. Wiley, New York, 1978. Zbl0387.53023
- [13] N.S. Trudinger, On degenerate fully nonlinear elliptic equations in balls, Bull. Aust. Math. Soc., Vol. 35, 1987, pp. 299-307. Zbl0611.35028MR878440
- [14] N.S. Trudinger, The Dirichlet problem for the prescribed curvature equations, Arch. Rat. Mech. Anal., Vol. 111, 1990, pp. 153-179. Zbl0721.35018MR1057653
- [15] N.S. Trudinger and J.I.E. Urbas, The Dirichlet problem for the equation of prescribed Gauss curvature, Bull. Aust. Math. Soc., Vol. 28, 1983, pp. 217-231. Zbl0524.35047MR729009
- [16] J.I.E. Urbas, The oblique derivative problem for equations of Monge-Ampère type, Proceedings of the Centre for Mathematical Analysis, Australian National University, Vol. 12, 1987, pp. 171-195. Zbl0649.35038MR924435
- [17] J.I.E. Urbas, On the existence of nonclassical solutions for two classes of fully nonlinear elliptic equations, Indiana Univ. Math. J., Vol. 39, 1990, pp. 355-382. Zbl0724.35028MR1089043
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.