Nonlinear oblique boundary value problems for hessian equations in two dimensions

John Urbas

Annales de l'I.H.P. Analyse non linéaire (1995)

  • Volume: 12, Issue: 5, page 507-575
  • ISSN: 0294-1449

How to cite

top

Urbas, John. "Nonlinear oblique boundary value problems for hessian equations in two dimensions." Annales de l'I.H.P. Analyse non linéaire 12.5 (1995): 507-575. <http://eudml.org/doc/78367>.

@article{Urbas1995,
author = {Urbas, John},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {unique admissible solution; subsolution; nolinear boundary condition},
language = {eng},
number = {5},
pages = {507-575},
publisher = {Gauthier-Villars},
title = {Nonlinear oblique boundary value problems for hessian equations in two dimensions},
url = {http://eudml.org/doc/78367},
volume = {12},
year = {1995},
}

TY - JOUR
AU - Urbas, John
TI - Nonlinear oblique boundary value problems for hessian equations in two dimensions
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1995
PB - Gauthier-Villars
VL - 12
IS - 5
SP - 507
EP - 575
LA - eng
KW - unique admissible solution; subsolution; nolinear boundary condition
UR - http://eudml.org/doc/78367
ER -

References

top
  1. [1] L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations I. Monge-Ampère equation, Comm. Pure Appl. Math., Vol. 37, 1984, pp. 369-402. Zbl0598.35047MR739925
  2. [2] L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations III. Functions of the eigenvalues of the Hessian, Acta Math., Vol. 155, 1985, pp. 261-301. Zbl0654.35031MR806416
  3. [3] S.Y. Cheng and S.T. Yau, On the regularity of the Monge-Ampère equation det (∂2u ∂xi∂xj) = F(x,u), Comm. Pure Appl. Math., Vol. 30, 1977, pp. 41-68. Zbl0347.35019MR437805
  4. [4] Ph. Delanoë, Classical solvability in dimension two of the second boundary value problem associated with the Monge-Ampère operator, Ann. Inst. Henri Poincarè, Analyse Non Linèaire, Vol. 8, 1991, pp. 443-457. Zbl0778.35037MR1136351
  5. [5] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, Second edition, 1983. Zbl0562.35001MR737190
  6. [6] N.M. Ivochkina, Classical solvability of the Dirichlet problem for the Monge-Ampère equation, Zap. Naučn. Sem. Leningrad Otdel. Mat. Inst. Steklov. (LOMI), Vol. 131, 1983, pp. 72-79. Zbl0522.35028MR718679
  7. [7] G.M. Lieberman, Two-dimensional nonlinear boundary value problems for elliptic equations, Trans. Amer. Math. Soc., Vol. 300, 1987, pp. 287-295. Zbl0627.35038MR871676
  8. [8] G.M. Lieberman and N.S. Trudinger, Nonlinear oblique boundary value problems for nonlinear elliptic equations, Trans. Amer. Math. Soc., Vol. 295, 1986, pp. 509-546. Zbl0619.35047MR833695
  9. [9] P.L. Lions, Sur les équations de Monge-Ampère I, Manuscripta Math., Vol. 41, 1983, pp. 1-44. Zbl0509.35036MR689131
  10. [10] P.L. Lions, N.S. Trudinoer and J.I.E. Urbas, The Neumann problem for equations of Monge-Ampère type, Comm. Pure Appl. Math., Vol. 39, 1986, pp. 539-563. Zbl0604.35027MR840340
  11. [11] A.V. Pogorelov, Monge-Ampère equations of elliptic type, Groningen, Noordhoff, 1964. Zbl0133.04902MR180763
  12. [12] A.V. Pogorelov, The Minkowski multidimensional problem, J. Wiley, New York, 1978. Zbl0387.53023
  13. [13] N.S. Trudinger, On degenerate fully nonlinear elliptic equations in balls, Bull. Aust. Math. Soc., Vol. 35, 1987, pp. 299-307. Zbl0611.35028MR878440
  14. [14] N.S. Trudinger, The Dirichlet problem for the prescribed curvature equations, Arch. Rat. Mech. Anal., Vol. 111, 1990, pp. 153-179. Zbl0721.35018MR1057653
  15. [15] N.S. Trudinger and J.I.E. Urbas, The Dirichlet problem for the equation of prescribed Gauss curvature, Bull. Aust. Math. Soc., Vol. 28, 1983, pp. 217-231. Zbl0524.35047MR729009
  16. [16] J.I.E. Urbas, The oblique derivative problem for equations of Monge-Ampère type, Proceedings of the Centre for Mathematical Analysis, Australian National University, Vol. 12, 1987, pp. 171-195. Zbl0649.35038MR924435
  17. [17] J.I.E. Urbas, On the existence of nonclassical solutions for two classes of fully nonlinear elliptic equations, Indiana Univ. Math. J., Vol. 39, 1990, pp. 355-382. Zbl0724.35028MR1089043

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.