Classical solvability in dimension two of the second boundary-value problem associated with the Monge-Ampère operator

P. Delanoë

Annales de l'I.H.P. Analyse non linéaire (1991)

  • Volume: 8, Issue: 5, page 443-457
  • ISSN: 0294-1449

How to cite

top

Delanoë, P.. "Classical solvability in dimension two of the second boundary-value problem associated with the Monge-Ampère operator." Annales de l'I.H.P. Analyse non linéaire 8.5 (1991): 443-457. <http://eudml.org/doc/78260>.

@article{Delanoë1991,
author = {Delanoë, P.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Monge-Ampère equation; maps between convex domains},
language = {eng},
number = {5},
pages = {443-457},
publisher = {Gauthier-Villars},
title = {Classical solvability in dimension two of the second boundary-value problem associated with the Monge-Ampère operator},
url = {http://eudml.org/doc/78260},
volume = {8},
year = {1991},
}

TY - JOUR
AU - Delanoë, P.
TI - Classical solvability in dimension two of the second boundary-value problem associated with the Monge-Ampère operator
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1991
PB - Gauthier-Villars
VL - 8
IS - 5
SP - 443
EP - 457
LA - eng
KW - Monge-Ampère equation; maps between convex domains
UR - http://eudml.org/doc/78260
ER -

References

top
  1. [1] A. Agmon, D. Douglis and L. Nirenberg, Estimates Near the Boundary for Solutions of Elliptic Partial Differential Equations Satisfying General Boundary Conditions, I.Comm. Pure Appl. Math., Vol. 12, 1959, pp. 623-727; II, Ibid., Vol. 17, 1964, pp. 35- 92. Zbl0093.10401MR125307
  2. [2] T. Aubin, Réduction du cas positif de l'équation de Monge-Ampère sur les variétés Kählériennes compactes à la démonstration d'une inégalité, J. Funct. Anal., Vol. 53, 1983, pp. 231-245. 
  3. [3] I. Bakel'man, Generalized Solutions of Monge-Ampère Equations, Dokl. Akad. Nauk. S.S.S.R., Vol. 114:6, 1957, pp. 1143-1145 (in russian). Zbl0114.29602MR95481
  4. [4] L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet Problem for Nonlinear Second-Order Elliptic Equations I. Monge-Ampère equation, Comm. Pure Appl.Math., Vol. 37, 1984, pp. 369-402. Zbl0598.35047MR739925
  5. [5] B. Dacorogna and J. Moser, On a Partial Differential Equation Involving the Jacobian Determinant, Ann. Inst. Henri Poincaré Analyse non linéaire, Vol. 7:1, 1990, pp. 1-26. Zbl0707.35041MR1046081
  6. [6] P. Delanoë, Equations du type de Monge-Ampère sur les variétés Riemanniennes compactes II, J. Funct. Anal., Vol. 41, 1981, pp. 341-353. Zbl0474.58023MR619957
  7. [7] P. Delanoë, Equations de Monge-Ampère en dimension deux, C. R. Acad. Sci. Paris, 294, série I, 1982, pp. 693-696. Zbl0497.35039MR666620
  8. [8] P. Delanoë, Plongements radiaux Sn → Rn+1 à courbure de Gauss positive prescrite, Ann. Sci. Ec. Norm. Sup., Vol. 18, 1985, pp. 635-649. Zbl0594.53039MR839688
  9. [9] P. Delanoë, Remarques sur les variétés localement Hessiennes, Osaka J. Math., Vol. 26, 1989, pp. 65-69. Zbl0754.53021MR991282
  10. [10] P. Delanoë, Viscosity Solutions of Eikonal and Lie Equations on Compact Manifolds, Ann. Global Anal. Geom., Vol. 7:2, 1989, pp. 79-83. Zbl0644.58020MR1032326
  11. [11] E. Hopf, Elementare Bemerkungen über die Lösungen partieller Differential-gleichungen zweiter Ordnung vom elliptischen Typus, Sitz. Ber. Preuß. Akad. Wissensch.Berlin, Math.-Phys. Kl, Vol. 19, 1927, pp. 147-152. Zbl53.0454.02JFM53.0454.02
  12. [12] E. Hopf, A Remark on Linear Elliptic Differential Equations of Second Order, Proc. Am. Math. Soc., Vol. 3, 1952, pp. 791-793. Zbl0048.07802MR50126
  13. [13] N.M. Ivotchkina, The a priori Estimate ∥u ∥2C(Ω) on Convex Solutions of the Dirichlet problem for the Monge-Ampère Equation, Zapisk. Nautchn. Semin. LOMI, Vol. 96, 1980, pp. 69-79. Zbl0472.35040
  14. [14] L.Y. Liao and F. Schulz, Regularity of Solutions of Two-Dimensional Monge-Ampère Equations, Transact. Am. Math. Soc., Vol. 307:1, 1988, pp. 271-277. Zbl0664.35023MR936816
  15. [15] G.M. Lieberman and N.S. Trudinger, Nonlinear Oblique Boundary Value Problems for Nonlinear Elliptic Equations, Transact. Am. Math. Soc., 295:2, 1986, pp. 509-546. Zbl0619.35047MR833695
  16. [16] P.-L. Lions, N.S. Trudinger and J.I.E. Urbas, The Neumann problem for Equations of Monge-Ampère Type, Comm. Pure Appl. Math., Vol. 39, 1986, pp. 539-563. Zbl0604.35027MR840340
  17. [17] L. Nirenberg, On Nonlinear Elliptic Partial Differential Equations and Hölder Continuity, Comm. Pure Appl. Math., Vol. 6, 1953, pp. 103-156. Zbl0050.09801MR64986
  18. [18] A.V. Pogorelov, Monge-Ampère Equations of Elliptic Type, Noordhoff Ltd, 1964. Zbl0133.04902MR180763
  19. [19] F. Schulz, Boundary Estimates for Solutions of Monge-Ampère Equations in the Plane, Ann. Sc. Norm. Sup. Pisa, Vol. 11:3, 1984, pp. 431-440. Zbl0573.35031MR785620
  20. [20] K.-S. Tso, Personal Letters from the Chinese University of Hong-Kong sent on July 12, 1988 and on June 7, 1989. 
  21. [21] J.I.E. Urbas, The Oblique Derivative Problem for Equations of Monge-Ampère Type in Two Dimensions, Preprint, Courant Institute and CMA at Canberra, 1987. Zbl0649.35038MR924435

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.