Perturbations of quadratic hamiltonian systems with symmetry
Emil Ivanov Horozov; Iliya Dimov Iliev
Annales de l'I.H.P. Analyse non linéaire (1996)
- Volume: 13, Issue: 1, page 17-56
- ISSN: 0294-1449
Access Full Article
topHow to cite
topHorozov, Emil Ivanov, and Iliev, Iliya Dimov. "Perturbations of quadratic hamiltonian systems with symmetry." Annales de l'I.H.P. Analyse non linéaire 13.1 (1996): 17-56. <http://eudml.org/doc/78374>.
@article{Horozov1996,
author = {Horozov, Emil Ivanov, Iliev, Iliya Dimov},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {cubic Hamiltonian; centroid symmetry; quadratic perturbation; Hamiltonian system; two limit cycles},
language = {eng},
number = {1},
pages = {17-56},
publisher = {Gauthier-Villars},
title = {Perturbations of quadratic hamiltonian systems with symmetry},
url = {http://eudml.org/doc/78374},
volume = {13},
year = {1996},
}
TY - JOUR
AU - Horozov, Emil Ivanov
AU - Iliev, Iliya Dimov
TI - Perturbations of quadratic hamiltonian systems with symmetry
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1996
PB - Gauthier-Villars
VL - 13
IS - 1
SP - 17
EP - 56
LA - eng
KW - cubic Hamiltonian; centroid symmetry; quadratic perturbation; Hamiltonian system; two limit cycles
UR - http://eudml.org/doc/78374
ER -
References
top- [1] N. A'campo, Le groupe de monodromie du déploiement des singularités isolées de courbes planes I, II. I:Math. Annalen, Vol. 213, 1975, No. 1, pp. 1-32; II: In Proc. Int. Congr. Math., (Vancouver, 1974), Vol. 1, 1975, pp. 395-404. Zbl0316.14011MR377108
- [2] V.I. Arnol'd, Geometrical methods in the theory of ordinary differential equations, Springer Verlag, Berlin, Heidelberg, New York, 1988. Zbl0648.34002MR947141
- [3] V.I. Arnol'd, A.N. Varchenko and S.M. Gusein-Zade, Singularities of differentiable maps II, Birkhäuser Verlag, Basel, 1988. MR966191
- [4] R. Bamón, A class of planar quadratic vector fields with a limit cycle surrounded by a saddle loop, Proceedings of the AMS, Vol. 288, 1983, pp. 719-724. Zbl0521.58046MR702307
- [5] N.N. Bautin, On the number of limit cycles which appear with the variation of the coefficients from an equilibrium position of focus or center type, Amer. Math. Soc. Transl., Vol. 100, 1954, pp. 1-19. Zbl0059.08201MR59426
- [6] R.I. Bogdanov, Bifurcation of the limit cycle of a family of planar vector fields, Selecta Math. Soviet., Vol. 1, 1981, pp. 373-387, Russian original Trudy Sem. I. G. Petrovskogo, 1976. Zbl0518.58029
- [7] W.A. Coppel, A survey of quadratic systems, J. Differential Equations, Vol. 2, 1966, pp. 293-304. Zbl0143.11903MR196182
- [8] W.A. Coppel and L. Gavrilov, The period function of a Hamiltonian quadratic system, Diff. Int. Equations, Vol. 6, 1993, No. 6, pp. 1357-1365. Zbl0780.34023MR1235199
- [9] B. Drachman, S.A. Van Gils and Zhang Zhi-Fen, Abelian integrals for quadratic vector fields, J. reine angew. Math., Vol. 382, 1987, pp. 165-180. Zbl0621.58033MR921170
- [10] W.F. Freiberger (Editor), The International Dictionary of Applied Mathematics, D. van Nostrand Company Inc., Princeton, New Jersey, 1960. Zbl0099.00103MR116566
- [11] L. Gavrilov and E. Horozov, Limit cycles and zeroes of Abelian integrals satisfying third order Picard-Fuchs equations, In "Bifurcations of Planar Vector Fields", Lect. Notes in Math., 1455, J.-P. Françoise, R. Roussarie, eds., pp 160-186. Zbl0719.34048MR1094379
- [12] L. Gavrilov and E. Horozov, Limit cycles of perturbations of quadratic Hamiltonian vector fields, J. Math. Pures Appl., Vol. 72, 1993, pp. 213-238. Zbl0829.58034MR1216096
- [13] S.M. Gusein-Zade, Intersection matrices for certain singularities of functions of two variables, Funct. Anal. Appl., Vol. 8, 1974, pp. 10-13. Zbl0304.14009MR338437
- [14] S.M. Gusein-Zade, Dynkin diagrams for singularities of functions of two variables, Funct. Anal. Appl., Vol. 8, 1974, pp. 295-300. Zbl0309.14006MR430302
- [15] E. Horozov and I.D. Iliev, On saddle-loop bifurcations of limit cycles in perturbations of quadratic Hamiltonian systems, J. Differential Equations, Vol. 113, 1994, No. 1, pp. 84-105. Zbl0808.34041MR1296162
- [16] E. Horozov and I.D. Iliev, On the number of limit cycles in perturbations of quadratic Hamiltonian systems, Proc. Lond. Math. Soc., Vol. 69, 1994, No. 1, pp. 198-224. Zbl0802.58046MR1272426
- [17] E. Horozov and I.D. Iliev, Hilbert-Arnold problem for cubic Hamiltonians and limit cycles, In: Proc. Fourth Intern. Coll. Diff. Eqs, VSP Intern. Sci. Publs, Utrecht, 1994, pp. 115-124. Zbl0843.34037MR1458390
- [18] Yu S. Il'Yashenko, Number of zeros of certain Abelian integrals in a real domain, Funct. Anal. Appl., Vol. 11, 1978, pp. 78-79. Zbl0386.58008
- [19] Yu S. Il'Yashenko, S. Yakovenko, Double exponential estimate for the number of zeros of complete Abelian integrals, Preprint, June 1994.
- [20] A. Khovanski, Real analytic manifolds with finiteness properties and complex Abelian integrals, Funct. Anal. Appl., Vol. 18, 1984, pp. 119-128. Zbl0584.32016
- [21] Li Jibin and Ou Yuehua, Global bifurcations and chaotic behaviour in a disturbed quadratic system with two centers (in Chinese), Acta Math. Appl. Sinica, Vol. 11, 1988, No. 3, pp. 312-323. Zbl0666.34034
- [22] G.S. Petrov, Nonoscillations of elliptic integrals, Funct. Anal. Appl., Vol. 24, 1990, No. 3, pp. 205-210. Zbl0738.33013MR1082030
- [23] L.S. Pontrjagin, Über Autoschwingungssysteme, die den Hamiltonischen nahe liegen, Zeitr. der Sowjetunion, Vol. 6, 1934, pp. 25-28. Zbl0010.02302
- [24] R. Roussarie, On the number of limit cycles which appear by perturbation of separatrix loop of planar vector fields, Bol. Soc. Bras. Mat., Vol. 617, 1986, pp. 67-101. Zbl0628.34032MR901596
- [25] A.N. Varchenko, Estimate of the number of zeros of Abelian integrals depending on parameters and limit cycles, Funct. Anal. Appl., Vol. 18, 1984, pp. 98-108. Zbl0578.58035MR745696
- [26] Ye Yan-Qian et al., Theory of limit cycles, Translation of Mathematical Monographs, Vol. 66, AMS, Providence, 1986. Zbl0588.34022MR854278
- [27] Zhi-Fen Zhang and Chengzhi Li, On the number of limit cycles of a class of quadratic Hamiltonian systems under quadratic perturbations, Res. Rept Peking Univ., No. 33, 1993.
- [28] H. Żoładek, Quadratic systems with center and their perturbations, J. Differential Equations, Vol. 109, 1994, No. 2, pp. 223-273. Zbl0797.34044MR1273302
- [29] A.B. Givental, Sturm's theorem for hyperelliptic integrals, Leningrad Math. J., Vol. 1, 1990. Zbl0724.58026MR1036839
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.