Perturbations of quadratic hamiltonian systems with symmetry

Emil Ivanov Horozov; Iliya Dimov Iliev

Annales de l'I.H.P. Analyse non linéaire (1996)

  • Volume: 13, Issue: 1, page 17-56
  • ISSN: 0294-1449

How to cite

top

Horozov, Emil Ivanov, and Iliev, Iliya Dimov. "Perturbations of quadratic hamiltonian systems with symmetry." Annales de l'I.H.P. Analyse non linéaire 13.1 (1996): 17-56. <http://eudml.org/doc/78374>.

@article{Horozov1996,
author = {Horozov, Emil Ivanov, Iliev, Iliya Dimov},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {cubic Hamiltonian; centroid symmetry; quadratic perturbation; Hamiltonian system; two limit cycles},
language = {eng},
number = {1},
pages = {17-56},
publisher = {Gauthier-Villars},
title = {Perturbations of quadratic hamiltonian systems with symmetry},
url = {http://eudml.org/doc/78374},
volume = {13},
year = {1996},
}

TY - JOUR
AU - Horozov, Emil Ivanov
AU - Iliev, Iliya Dimov
TI - Perturbations of quadratic hamiltonian systems with symmetry
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1996
PB - Gauthier-Villars
VL - 13
IS - 1
SP - 17
EP - 56
LA - eng
KW - cubic Hamiltonian; centroid symmetry; quadratic perturbation; Hamiltonian system; two limit cycles
UR - http://eudml.org/doc/78374
ER -

References

top
  1. [1] N. A'campo, Le groupe de monodromie du déploiement des singularités isolées de courbes planes I, II. I:Math. Annalen, Vol. 213, 1975, No. 1, pp. 1-32; II: In Proc. Int. Congr. Math., (Vancouver, 1974), Vol. 1, 1975, pp. 395-404. Zbl0316.14011MR377108
  2. [2] V.I. Arnol'd, Geometrical methods in the theory of ordinary differential equations, Springer Verlag, Berlin, Heidelberg, New York, 1988. Zbl0648.34002MR947141
  3. [3] V.I. Arnol'd, A.N. Varchenko and S.M. Gusein-Zade, Singularities of differentiable maps II, Birkhäuser Verlag, Basel, 1988. MR966191
  4. [4] R. Bamón, A class of planar quadratic vector fields with a limit cycle surrounded by a saddle loop, Proceedings of the AMS, Vol. 288, 1983, pp. 719-724. Zbl0521.58046MR702307
  5. [5] N.N. Bautin, On the number of limit cycles which appear with the variation of the coefficients from an equilibrium position of focus or center type, Amer. Math. Soc. Transl., Vol. 100, 1954, pp. 1-19. Zbl0059.08201MR59426
  6. [6] R.I. Bogdanov, Bifurcation of the limit cycle of a family of planar vector fields, Selecta Math. Soviet., Vol. 1, 1981, pp. 373-387, Russian original Trudy Sem. I. G. Petrovskogo, 1976. Zbl0518.58029
  7. [7] W.A. Coppel, A survey of quadratic systems, J. Differential Equations, Vol. 2, 1966, pp. 293-304. Zbl0143.11903MR196182
  8. [8] W.A. Coppel and L. Gavrilov, The period function of a Hamiltonian quadratic system, Diff. Int. Equations, Vol. 6, 1993, No. 6, pp. 1357-1365. Zbl0780.34023MR1235199
  9. [9] B. Drachman, S.A. Van Gils and Zhang Zhi-Fen, Abelian integrals for quadratic vector fields, J. reine angew. Math., Vol. 382, 1987, pp. 165-180. Zbl0621.58033MR921170
  10. [10] W.F. Freiberger (Editor), The International Dictionary of Applied Mathematics, D. van Nostrand Company Inc., Princeton, New Jersey, 1960. Zbl0099.00103MR116566
  11. [11] L. Gavrilov and E. Horozov, Limit cycles and zeroes of Abelian integrals satisfying third order Picard-Fuchs equations, In "Bifurcations of Planar Vector Fields", Lect. Notes in Math., 1455, J.-P. Françoise, R. Roussarie, eds., pp 160-186. Zbl0719.34048MR1094379
  12. [12] L. Gavrilov and E. Horozov, Limit cycles of perturbations of quadratic Hamiltonian vector fields, J. Math. Pures Appl., Vol. 72, 1993, pp. 213-238. Zbl0829.58034MR1216096
  13. [13] S.M. Gusein-Zade, Intersection matrices for certain singularities of functions of two variables, Funct. Anal. Appl., Vol. 8, 1974, pp. 10-13. Zbl0304.14009MR338437
  14. [14] S.M. Gusein-Zade, Dynkin diagrams for singularities of functions of two variables, Funct. Anal. Appl., Vol. 8, 1974, pp. 295-300. Zbl0309.14006MR430302
  15. [15] E. Horozov and I.D. Iliev, On saddle-loop bifurcations of limit cycles in perturbations of quadratic Hamiltonian systems, J. Differential Equations, Vol. 113, 1994, No. 1, pp. 84-105. Zbl0808.34041MR1296162
  16. [16] E. Horozov and I.D. Iliev, On the number of limit cycles in perturbations of quadratic Hamiltonian systems, Proc. Lond. Math. Soc., Vol. 69, 1994, No. 1, pp. 198-224. Zbl0802.58046MR1272426
  17. [17] E. Horozov and I.D. Iliev, Hilbert-Arnold problem for cubic Hamiltonians and limit cycles, In: Proc. Fourth Intern. Coll. Diff. Eqs, VSP Intern. Sci. Publs, Utrecht, 1994, pp. 115-124. Zbl0843.34037MR1458390
  18. [18] Yu S. Il'Yashenko, Number of zeros of certain Abelian integrals in a real domain, Funct. Anal. Appl., Vol. 11, 1978, pp. 78-79. Zbl0386.58008
  19. [19] Yu S. Il'Yashenko, S. Yakovenko, Double exponential estimate for the number of zeros of complete Abelian integrals, Preprint, June 1994. 
  20. [20] A. Khovanski, Real analytic manifolds with finiteness properties and complex Abelian integrals, Funct. Anal. Appl., Vol. 18, 1984, pp. 119-128. Zbl0584.32016
  21. [21] Li Jibin and Ou Yuehua, Global bifurcations and chaotic behaviour in a disturbed quadratic system with two centers (in Chinese), Acta Math. Appl. Sinica, Vol. 11, 1988, No. 3, pp. 312-323. Zbl0666.34034
  22. [22] G.S. Petrov, Nonoscillations of elliptic integrals, Funct. Anal. Appl., Vol. 24, 1990, No. 3, pp. 205-210. Zbl0738.33013MR1082030
  23. [23] L.S. Pontrjagin, Über Autoschwingungssysteme, die den Hamiltonischen nahe liegen, Zeitr. der Sowjetunion, Vol. 6, 1934, pp. 25-28. Zbl0010.02302
  24. [24] R. Roussarie, On the number of limit cycles which appear by perturbation of separatrix loop of planar vector fields, Bol. Soc. Bras. Mat., Vol. 617, 1986, pp. 67-101. Zbl0628.34032MR901596
  25. [25] A.N. Varchenko, Estimate of the number of zeros of Abelian integrals depending on parameters and limit cycles, Funct. Anal. Appl., Vol. 18, 1984, pp. 98-108. Zbl0578.58035MR745696
  26. [26] Ye Yan-Qian et al., Theory of limit cycles, Translation of Mathematical Monographs, Vol. 66, AMS, Providence, 1986. Zbl0588.34022MR854278
  27. [27] Zhi-Fen Zhang and Chengzhi Li, On the number of limit cycles of a class of quadratic Hamiltonian systems under quadratic perturbations, Res. Rept Peking Univ., No. 33, 1993. 
  28. [28] H. Żoładek, Quadratic systems with center and their perturbations, J. Differential Equations, Vol. 109, 1994, No. 2, pp. 223-273. Zbl0797.34044MR1273302
  29. [29] A.B. Givental, Sturm's theorem for hyperelliptic integrals, Leningrad Math. J., Vol. 1, 1990. Zbl0724.58026MR1036839

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.