Large deviation asymptotics for Anosov flows

Simon Waddington

Annales de l'I.H.P. Analyse non linéaire (1996)

  • Volume: 13, Issue: 4, page 445-484
  • ISSN: 0294-1449

How to cite

top

Waddington, Simon. "Large deviation asymptotics for Anosov flows." Annales de l'I.H.P. Analyse non linéaire 13.4 (1996): 445-484. <http://eudml.org/doc/78388>.

@article{Waddington1996,
author = {Waddington, Simon},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {asymptotics; zeta function; large deviation probabilities; subshifts of finite type; Anosov flow; Ruelle operator},
language = {eng},
number = {4},
pages = {445-484},
publisher = {Gauthier-Villars},
title = {Large deviation asymptotics for Anosov flows},
url = {http://eudml.org/doc/78388},
volume = {13},
year = {1996},
}

TY - JOUR
AU - Waddington, Simon
TI - Large deviation asymptotics for Anosov flows
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1996
PB - Gauthier-Villars
VL - 13
IS - 4
SP - 445
EP - 484
LA - eng
KW - asymptotics; zeta function; large deviation probabilities; subshifts of finite type; Anosov flow; Ruelle operator
UR - http://eudml.org/doc/78388
ER -

References

top
  1. [B1] R. Bowen, Symbolic dynamics for hyperbolic flows, Amer. J. Math., Vol. 95, 1973, pp. 429-460. Zbl0282.58009MR339281
  2. [B2] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, LNM 470, Springer Verlag, Berlin-Heidelberg-New York, 1975. Zbl0308.28010MR442989
  3. [BR] R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, Invent. Math., Vol. 29, 1975, pp. 181-202. Zbl0311.58010MR380889
  4. [CP] Z. Coelho and W. Parry, Central limit asymptotics for shifts of finite type, Isr. J. Math., Vol. 69, 1990, pp. 235-249. Zbl0701.60026MR1045376
  5. [D] M. Denker, Large deviations and the pressure function. In: Transactions of the Eleventh Prague Conference on Information Theory, Statistical Decision Functions and Random Processes, Czech Academy of Sciences, 1992, pp. 21-33. Zbl0769.60025
  6. [DP] M. Denker and W. Philipp, Approximation by Browian motion for Gibbs measures and flows under a function, Ergod. Th. and Dyn. Syst., Vol. 4, 1984, pp. 541-552. Zbl0554.60077MR779712
  7. [De] H. Delange, Généralisation du Théorème de Ikehara, Ann. Éc. Norm., Vol. 71, 1951, pp. 213-242. Zbl0056.33101MR68667
  8. [E] R. Ellis, Large Deviations and Statistical Mechanics, Springer-Verlag, New York, Berlin, Heidelberg, 1985. Zbl0567.60031MR814705
  9. [GH] Y. Guivarc'h and J. Hardy, Théorèmes limites pour une classe de chaines de Markov et applications aux difféomorphismes d'Anosov, Ann. Inst. Henri Poincaré (Probabilitiés et Statistique), Vol. 24, 1988, pp. 73-98. Zbl0649.60041MR937957
  10. [K] Y. Kifer, Large deviations in dynamical systems and stochastic processes, Trans. Amer. Math. Soc., Vol. 321, 1990, pp. 505-524. Zbl0714.60019MR1025756
  11. [Ka] Y. Katznelson, An Introduction to Harmonic Analysis, Wiley, New York, 1968. Zbl0169.17902MR248482
  12. [KS] A. Katsuda and T. Sunada, Closed orbits in homology classes, Publ. Math. IHES, Vol. 71, 1990, pp. 5-32. Zbl0728.58026MR1079641
  13. [La1] S. Lalley, Ruelle's Perron-Frobenius theorem and a central limit theorem for additive functionals of one-dimensional Gibbs states, Proc. Conf. in honour of H. Robbins, 1985. Zbl0679.60034
  14. [La2] S. Lalley, Distribution of periodic orbits of symbolic and Axiom A flows, Adv. Appl. Math., Vol. 8, 1987, pp. 154-193. Zbl0637.58013MR886923
  15. [Po1] M. Pollicott, A complex Ruelle-Perron-Frobenius theorem and two counterexamples, Ergod. Th. and Dyn. Syst., Vol. 4, 1984, pp. 135-146. Zbl0575.47009MR758899
  16. [Po2] M. Pollicott, On the rate of mixing of Axiom A flows, Invent. Math., Vol. 81, 1985, pp. 413-426. Zbl0591.58025MR807065
  17. [PP] W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Asterisque, Vol. 187-188, Math. Soc. France, 1990. Zbl0726.58003MR1085356
  18. [Ra] M. Ratner, The central limit theorem for geodesic flows on n-dimensional manifolds of negative curvature, Isr. J. Math., Vol. 16, 1973, pp. 181-197. Zbl0283.58010MR333121
  19. [Ru1] D. Ruelle, Thermodynamic Formalism, Addison Wesley, New York, 1978. MR511655
  20. [Ru2] D. Ruelle, Resonances for Axiom A flows, J. Diff. Geom., Vol. 25, 1987, pp. 99-116. Zbl0658.58026MR873457
  21. [Sc] S. Schwartzmann, Asymptotic cycles, Ann. of Math., Vol. 118, 1957, pp. 270-284. Zbl0207.22603MR88720
  22. [Sh1] R. Sharp, Prime orbit theorems with multidimensional constraints for Axiom A flows, Monats. Math., Vol. 114, 1992, pp. 261-304. Zbl0765.58025MR1203975
  23. [Sh2] R. Sharp, Closed orbits in homology classes for Anosov flows, Ergod. Th. Dyn. Syst., Vol. 13, 1993, pp. 387-408. Zbl0783.58059MR1235480
  24. [T1] Y. Takahashi, Entropy functional (free energy) for dynamical systems and their random perturbations. In: Stochastic analysis (Katata/Kyoto 1982), pp. 437-467, North Holland Math. Library 32, North Holland, Amsterdam-New York, 1984. Zbl0553.60097MR780769
  25. [T2] Y. Takahashi, Probability theory and mathematical statistics (Kyoto 1986), pp. 482- 491, LNM 1299, Springer Verlag, Berlin-Heidelberg-New York, 1988. Zbl0656.60039
  26. [W] D.V. Widder, The Laplace Transform, Princeton University University Press, 1946. Zbl0063.08245MR5923JFM67.0384.01
  27. [Y] L.S. Young, Some large deviation results for dynamical systems, Trans. Amer. Math. Soc., Vol. 318, 1990, pp. 525-543. Zbl0721.58030

NotesEmbed ?

top

You must be logged in to post comments.