The local ill-posedness of the modified KdV equation
Björn Birnir; Gustavo Ponce; Nils Svanstedt
Annales de l'I.H.P. Analyse non linéaire (1996)
- Volume: 13, Issue: 4, page 529-535
- ISSN: 0294-1449
Access Full Article
topHow to cite
topReferences
top- [1] Batemann Manuscript Project, Tables of Integral Transforms, Vol. IMc Graw-Hill, New York, 1954.
- [2] B. Bimir, Kenig C.E., Ponce G., Svanstead N. and Vega L., On the ill-posedness of the IVP for the generalized Korteweg-de Vries and nonlinear Schrödinger equations, to appear in the Journal of the London Math. Soc., 1996. Zbl0855.35112MR1347022
- [3] C.S. Gardner, Korteweg de Vries equation and generalizations IV. The Korteweg de Vries equation as a Hamiltonian system, J. Math. Phys., Vol. 12, 1971, pp. 1548-1551. Zbl0283.35021MR286402
- [4] R.T. Glassey, On the blowing-up solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys., Vol. 18, 1979, pp. 1794-1797. Zbl0372.35009MR460850
- [5] C.S. Gardner, T.H. Greene, M.D. Kruskal and R.M. Miura, Methods for solving the Korteweg-de Vries equation, Physical Review Letters, Vol. 19, 1967, pp. 1095-1097. Zbl1061.35520
- [6] C.E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via contraction principle, Comm. Pure Appl. Math., Vol. 46, 1993, pp. 527-620. Zbl0808.35128MR1211741
- [7] R.M. Miura, Korteweg-de Vries equation and generalizations I. A remarkable explicit nonlinear transformation, J. Math. Phys., Vol. 9, 1968, pp. 1202-1204. Zbl0283.35018MR252825
- [8] J. Rauch, Nonlinear superposition and absorption of delta waves in one space dimension, J. Funct. Anal., Vol. 73, 1987, pp. 152-178. Zbl0661.35058MR890661