The local ill-posedness of the modified KdV equation

Björn Birnir; Gustavo Ponce; Nils Svanstedt

Annales de l'I.H.P. Analyse non linéaire (1996)

  • Volume: 13, Issue: 4, page 529-535
  • ISSN: 0294-1449

How to cite

top

Birnir, Björn, Ponce, Gustavo, and Svanstedt, Nils. "The local ill-posedness of the modified KdV equation." Annales de l'I.H.P. Analyse non linéaire 13.4 (1996): 529-535. <http://eudml.org/doc/78390>.

@article{Birnir1996,
author = {Birnir, Björn, Ponce, Gustavo, Svanstedt, Nils},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {local ill-posedness of the Cauchy problem; modified KdV equation},
language = {eng},
number = {4},
pages = {529-535},
publisher = {Gauthier-Villars},
title = {The local ill-posedness of the modified KdV equation},
url = {http://eudml.org/doc/78390},
volume = {13},
year = {1996},
}

TY - JOUR
AU - Birnir, Björn
AU - Ponce, Gustavo
AU - Svanstedt, Nils
TI - The local ill-posedness of the modified KdV equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1996
PB - Gauthier-Villars
VL - 13
IS - 4
SP - 529
EP - 535
LA - eng
KW - local ill-posedness of the Cauchy problem; modified KdV equation
UR - http://eudml.org/doc/78390
ER -

References

top
  1. [1] Batemann Manuscript Project, Tables of Integral Transforms, Vol. IMc Graw-Hill, New York, 1954. 
  2. [2] B. Bimir, Kenig C.E., Ponce G., Svanstead N. and Vega L., On the ill-posedness of the IVP for the generalized Korteweg-de Vries and nonlinear Schrödinger equations, to appear in the Journal of the London Math. Soc., 1996. Zbl0855.35112MR1347022
  3. [3] C.S. Gardner, Korteweg de Vries equation and generalizations IV. The Korteweg de Vries equation as a Hamiltonian system, J. Math. Phys., Vol. 12, 1971, pp. 1548-1551. Zbl0283.35021MR286402
  4. [4] R.T. Glassey, On the blowing-up solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys., Vol. 18, 1979, pp. 1794-1797. Zbl0372.35009MR460850
  5. [5] C.S. Gardner, T.H. Greene, M.D. Kruskal and R.M. Miura, Methods for solving the Korteweg-de Vries equation, Physical Review Letters, Vol. 19, 1967, pp. 1095-1097. Zbl1061.35520
  6. [6] C.E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via contraction principle, Comm. Pure Appl. Math., Vol. 46, 1993, pp. 527-620. Zbl0808.35128MR1211741
  7. [7] R.M. Miura, Korteweg-de Vries equation and generalizations I. A remarkable explicit nonlinear transformation, J. Math. Phys., Vol. 9, 1968, pp. 1202-1204. Zbl0283.35018MR252825
  8. [8] J. Rauch, Nonlinear superposition and absorption of delta waves in one space dimension, J. Funct. Anal., Vol. 73, 1987, pp. 152-178. Zbl0661.35058MR890661

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.