Minimizing a functional depending on and on
Annales de l'I.H.P. Analyse non linéaire (1997)
- Volume: 14, Issue: 3, page 339-352
- ISSN: 0294-1449
Access Full Article
topHow to cite
topCellina, Arrigo. "Minimizing a functional depending on $\nabla u$ and on $u$." Annales de l'I.H.P. Analyse non linéaire 14.3 (1997): 339-352. <http://eudml.org/doc/78414>.
@article{Cellina1997,
author = {Cellina, Arrigo},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {existence of solutions; minimum problems},
language = {eng},
number = {3},
pages = {339-352},
publisher = {Gauthier-Villars},
title = {Minimizing a functional depending on $\nabla u$ and on $u$},
url = {http://eudml.org/doc/78414},
volume = {14},
year = {1997},
}
TY - JOUR
AU - Cellina, Arrigo
TI - Minimizing a functional depending on $\nabla u$ and on $u$
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1997
PB - Gauthier-Villars
VL - 14
IS - 3
SP - 339
EP - 352
LA - eng
KW - existence of solutions; minimum problems
UR - http://eudml.org/doc/78414
ER -
References
top- [1] A. Cellina, On minima of a functional of the gradient: sufficient conditions, Nonlinear Analysis, TMA, Vol. 20, 1993, pp. 343-347. Zbl0784.49022MR1206423
- [2] A. Cellina and S. Perrotta, On minima of radially symmetric functionals of the gradient, Nonlinear Analysis, TMA, Vol. 23, 1994, pp. 239-249. Zbl0819.49013MR1289130
- [3] A. Cellina and S. Perrotta, On a problem of Potential Wells, Journal of Convex Anal.z, Vol. 2, 1995, pp. 103-116. Zbl0880.49005MR1363363
- [4] A. Cellina and S. Zagatti, A version of Olech's Lemma in a Problem of the Calculus of Variations, SIAM J. Control and Optimization, Vol. 32, 1994, pp. 1114-1127. Zbl0874.49013MR1280232
- [5] A. Cellina and S. Zagatti, An Existence Result in a Problem of the Vectorial Case of the Calculus of Variations, SIAM J. Control and Optimization, Vol. 333, 1995. Zbl0822.49009MR1327245
- [6] B. Dacorogna and P. Marcellini, Existence of Minimizers for non quasiconvex integrals, Preprint Ecole Polytechnique Federale Lausanne, June 1994, to appear in: Arch. Rat. Mech. Anal. Zbl0837.49002MR1354700
- [7] L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, 1992. Zbl0804.28001MR1158660
- [8] G. Friesecke, A necessary and sufficient condition for nonattainement and formation of microstructure almost everywhere in scalar variational problems, Proc. Royal Soc. Edinburgh, Vol. 124, 1984, pp. 437-471. Zbl0809.49017MR1286914
- [9] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1977. Zbl0361.35003MR473443
- [10] J. Goodman, V.R. Kohn and L. Reyna, Numerical study of a relaxed variational problem from optimal design, Computer Methods in Appl. Math. and Eng., Vol. 57, 1986, pp. 107-127. Zbl0591.73119MR859964
- [11] B. Kawohl, J. Stara and G. Wittum, Analysis and Numerical Studies of a Problem of Shape Design, Arch. Rat. Mech. Anal., Vol. 114, 1991, pp. 349-363. Zbl0726.65071MR1100800
- [12] R.V. Kohn and G. Strang, Optimal Design and Relaxation of Variational Problems I, Comm. Pure Appl. Math., Vol. 39, 1986, pp. 113-137. Zbl0609.49008MR820342
- [13] E. Mascolo and R. Schianchi, Existence Theorems for Nonconvex Problems, J. Math. Pures Appl., Vol. 62, 1983, pp. 349-359. Zbl0522.49001MR718948
- [14] F. Murat and L. Tartar, Calcul des variations et Homegenization, in: Les Méthodes de l'homogenization, Eds: D. Bergman et al., Collection de la Direction des Études et recherche de l'Électricité de France, Vol. 57, 1985, pp. 319-369. MR844873
- [15] R. Tahraoui, Sur une classe de fonctionnelles non convexes et applications, SIAM J. Math. Anal., Vol. 21, 1990, pp. 37-52. Zbl0738.73025MR1032726
- [16] R. Tahraoui, Théoremes d'existence en calcul des variations et applications a l'élasticité non lineaire, Proc. Royal Soc. Edinburgh, Vol. 109 A, 1988, pp. 51-78. Zbl0681.49004MR952329
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.