Geometric constraints on the domain for a class of minimum problems

Graziano Crasta; Annalisa Malusa

ESAIM: Control, Optimisation and Calculus of Variations (2003)

  • Volume: 9, page 125-133
  • ISSN: 1292-8119

Abstract

top
We consider minimization problems of the form min u ϕ + W 0 1 , 1 ( Ω ) Ω [ f ( D u ( x ) ) - u ( x ) ] d x where Ω N is a bounded convex open set, and the Borel function f : N [ 0 , + ] is assumed to be neither convex nor coercive. Under suitable assumptions involving the geometry of Ω and the zero level set of f , we prove that the viscosity solution of a related Hamilton–Jacobi equation provides a minimizer for the integral functional.

How to cite

top

Crasta, Graziano, and Malusa, Annalisa. "Geometric constraints on the domain for a class of minimum problems." ESAIM: Control, Optimisation and Calculus of Variations 9 (2003): 125-133. <http://eudml.org/doc/245310>.

@article{Crasta2003,
abstract = {We consider minimization problems of the form $\{\rm min\}_\{u\in \varphi +W^\{1,1\}_0(\Omega )\}\int _\Omega [f(Du(x))-u(x)]\, \{\rm d\}x$ where $\Omega \subseteq \mathbb \{R\}^N$ is a bounded convex open set, and the Borel function $f\colon \mathbb \{R\}^N \rightarrow [0, +\infty ]$ is assumed to be neither convex nor coercive. Under suitable assumptions involving the geometry of $\Omega $ and the zero level set of $f$, we prove that the viscosity solution of a related Hamilton–Jacobi equation provides a minimizer for the integral functional.},
author = {Crasta, Graziano, Malusa, Annalisa},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {calculus of variations; existence; non-convex problems; non-coercive problems; viscosity solutions; integral functional},
language = {eng},
pages = {125-133},
publisher = {EDP-Sciences},
title = {Geometric constraints on the domain for a class of minimum problems},
url = {http://eudml.org/doc/245310},
volume = {9},
year = {2003},
}

TY - JOUR
AU - Crasta, Graziano
AU - Malusa, Annalisa
TI - Geometric constraints on the domain for a class of minimum problems
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2003
PB - EDP-Sciences
VL - 9
SP - 125
EP - 133
AB - We consider minimization problems of the form ${\rm min}_{u\in \varphi +W^{1,1}_0(\Omega )}\int _\Omega [f(Du(x))-u(x)]\, {\rm d}x$ where $\Omega \subseteq \mathbb {R}^N$ is a bounded convex open set, and the Borel function $f\colon \mathbb {R}^N \rightarrow [0, +\infty ]$ is assumed to be neither convex nor coercive. Under suitable assumptions involving the geometry of $\Omega $ and the zero level set of $f$, we prove that the viscosity solution of a related Hamilton–Jacobi equation provides a minimizer for the integral functional.
LA - eng
KW - calculus of variations; existence; non-convex problems; non-coercive problems; viscosity solutions; integral functional
UR - http://eudml.org/doc/245310
ER -

References

top
  1. [1] M. Bardi and I. Capuzzo Dolcetta, Optimal control and viscosity solutions of Hamilton–Jacobi–Bellman equations. Birkhäuser, Boston (1997). Zbl0890.49011
  2. [2] G. Barles, Solutions de viscosité des équations de Hamilton–Jacobi. Springer Verlag, Berlin (1994). Zbl0819.35002
  3. [3] P. Bauman and D. Phillips, A non-convex variational problem related to change of phase. Appl. Math. Optim. 21 (1990) 113-138. Zbl0686.73018MR1019397
  4. [4] P. Cardaliaguet, B. Dacorogna, W. Gangbo and N. Georgy, Geometric restrictions for the existence of viscosity solutions. Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (1999) 189-220. Zbl0927.35021MR1674769
  5. [5] P. Celada, Some scalar and vectorial problems in the Calculus of Variations, Ph.D. Thesis. SISSA, Trieste (1997). 
  6. [6] P. Celada and A. Cellina, Existence and non existence of solutions to a variational problem on a square. Houston J. Math. 24 (1998) 345-375. Zbl0980.49020MR1690397
  7. [7] P. Celada, S. Perrotta and G. Treu, Existence of solutions for a class of non convex minimum problems. Math. Z. 228 (1998) 177-199. Zbl0936.49010MR1617955
  8. [8] A. Cellina, Minimizing a functional depending on u and on u . Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (1997) 339-352. Zbl0876.49001MR1450952
  9. [9] A. Cellina and S. Perrotta, On minima of radially symmetric functionals of the gradient. Nonlinear Anal. 23 (1994) 239-249. Zbl0819.49013MR1289130
  10. [10] G. Crasta, On the minimum problem for a class of non-coercive non-convex variational problems. SIAM J. Control Optim. 38 (1999) 237-253. Zbl0942.49012MR1740598
  11. [11] G. Crasta, Existence, uniqueness and qualitative properties of minima to radially symmetric non-coercive non-convex variational problems. Math. Z. 235 (2000) 569-589. Zbl0965.49003MR1800213
  12. [12] G. Crasta and A. Malusa, Euler–Lagrange inclusions and existence of minimizers for a class of non-coercive variational problems. J. Convex Anal. 7 (2000) 167-181. Zbl0956.49008
  13. [13] G. Crasta and A. Malusa, Non-convex minimization problems for functionals defined on vector valued functions. J. Math. Anal. Appl. 254 (2001) 538-557. Zbl1093.49501MR1805523
  14. [14] B. Dacorogna and P. Marcellini, Existence of minimizers for non-quasiconvex integrals. Arch. Rational Mech. Anal. 131 (1995) 359-399. Zbl0837.49002MR1354700
  15. [15] B. Kawohl, J. Stara and G. Wittum, Analysis and numerical studies of a problem of shape design. Arch. Rational Mech. Anal. 114 (1991) 349-363. Zbl0726.65071MR1100800
  16. [16] R. Kohn and G. Strang, Optimal design and relaxation of variational problems, I, II and III. Comm. Pure Appl. Math. 39 (1976) 113-137, 139-182, 353-377. Zbl0621.49008MR820342
  17. [17] P.L. Lions, Generalized solutions of Hamilton–Jacobi equations. Pitman, London, Pitman Res. Notes Math. Ser. 69 (1982). Zbl0497.35001
  18. [18] E. Mascolo and R. Schianchi, Existence theorems for nonconvex problems J. Math. Pures Appl. 62 (1983) 349-359. Zbl0522.49001MR718948
  19. [19] R.T. Rockafellar, Convex Analysis. Princeton Univ. Press, Princeton (1970). Zbl0193.18401
  20. [20] G. Treu, An existence result for a class of non convex problems of the Calculus of Variations. J. Convex Anal. 5 (1998) 31-44. Zbl0908.49013MR1649421
  21. [21] M. Vornicescu, A variational problem on subsets of n . Proc. Roy. Soc. Edinburg Sect. A 127 (1997) 1089-1101. Zbl0920.49002MR1475648

NotesEmbed ?

top

You must be logged in to post comments.