Geometric constraints on the domain for a class of minimum problems

Graziano Crasta; Annalisa Malusa

ESAIM: Control, Optimisation and Calculus of Variations (2003)

  • Volume: 9, page 125-133
  • ISSN: 1292-8119

Abstract

top
We consider minimization problems of the form min u ϕ + W 0 1 , 1 ( Ω ) Ω [ f ( D u ( x ) ) - u ( x ) ] d x where Ω N is a bounded convex open set, and the Borel function f : N [ 0 , + ] is assumed to be neither convex nor coercive. Under suitable assumptions involving the geometry of Ω and the zero level set of f , we prove that the viscosity solution of a related Hamilton–Jacobi equation provides a minimizer for the integral functional.

How to cite

top

Crasta, Graziano, and Malusa, Annalisa. "Geometric constraints on the domain for a class of minimum problems." ESAIM: Control, Optimisation and Calculus of Variations 9 (2003): 125-133. <http://eudml.org/doc/245310>.

@article{Crasta2003,
abstract = {We consider minimization problems of the form $\{\rm min\}_\{u\in \varphi +W^\{1,1\}_0(\Omega )\}\int _\Omega [f(Du(x))-u(x)]\, \{\rm d\}x$ where $\Omega \subseteq \mathbb \{R\}^N$ is a bounded convex open set, and the Borel function $f\colon \mathbb \{R\}^N \rightarrow [0, +\infty ]$ is assumed to be neither convex nor coercive. Under suitable assumptions involving the geometry of $\Omega $ and the zero level set of $f$, we prove that the viscosity solution of a related Hamilton–Jacobi equation provides a minimizer for the integral functional.},
author = {Crasta, Graziano, Malusa, Annalisa},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {calculus of variations; existence; non-convex problems; non-coercive problems; viscosity solutions; integral functional},
language = {eng},
pages = {125-133},
publisher = {EDP-Sciences},
title = {Geometric constraints on the domain for a class of minimum problems},
url = {http://eudml.org/doc/245310},
volume = {9},
year = {2003},
}

TY - JOUR
AU - Crasta, Graziano
AU - Malusa, Annalisa
TI - Geometric constraints on the domain for a class of minimum problems
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2003
PB - EDP-Sciences
VL - 9
SP - 125
EP - 133
AB - We consider minimization problems of the form ${\rm min}_{u\in \varphi +W^{1,1}_0(\Omega )}\int _\Omega [f(Du(x))-u(x)]\, {\rm d}x$ where $\Omega \subseteq \mathbb {R}^N$ is a bounded convex open set, and the Borel function $f\colon \mathbb {R}^N \rightarrow [0, +\infty ]$ is assumed to be neither convex nor coercive. Under suitable assumptions involving the geometry of $\Omega $ and the zero level set of $f$, we prove that the viscosity solution of a related Hamilton–Jacobi equation provides a minimizer for the integral functional.
LA - eng
KW - calculus of variations; existence; non-convex problems; non-coercive problems; viscosity solutions; integral functional
UR - http://eudml.org/doc/245310
ER -

References

top
  1. [1] M. Bardi and I. Capuzzo Dolcetta, Optimal control and viscosity solutions of Hamilton–Jacobi–Bellman equations. Birkhäuser, Boston (1997). Zbl0890.49011
  2. [2] G. Barles, Solutions de viscosité des équations de Hamilton–Jacobi. Springer Verlag, Berlin (1994). Zbl0819.35002
  3. [3] P. Bauman and D. Phillips, A non-convex variational problem related to change of phase. Appl. Math. Optim. 21 (1990) 113-138. Zbl0686.73018MR1019397
  4. [4] P. Cardaliaguet, B. Dacorogna, W. Gangbo and N. Georgy, Geometric restrictions for the existence of viscosity solutions. Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (1999) 189-220. Zbl0927.35021MR1674769
  5. [5] P. Celada, Some scalar and vectorial problems in the Calculus of Variations, Ph.D. Thesis. SISSA, Trieste (1997). 
  6. [6] P. Celada and A. Cellina, Existence and non existence of solutions to a variational problem on a square. Houston J. Math. 24 (1998) 345-375. Zbl0980.49020MR1690397
  7. [7] P. Celada, S. Perrotta and G. Treu, Existence of solutions for a class of non convex minimum problems. Math. Z. 228 (1998) 177-199. Zbl0936.49010MR1617955
  8. [8] A. Cellina, Minimizing a functional depending on u and on u . Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (1997) 339-352. Zbl0876.49001MR1450952
  9. [9] A. Cellina and S. Perrotta, On minima of radially symmetric functionals of the gradient. Nonlinear Anal. 23 (1994) 239-249. Zbl0819.49013MR1289130
  10. [10] G. Crasta, On the minimum problem for a class of non-coercive non-convex variational problems. SIAM J. Control Optim. 38 (1999) 237-253. Zbl0942.49012MR1740598
  11. [11] G. Crasta, Existence, uniqueness and qualitative properties of minima to radially symmetric non-coercive non-convex variational problems. Math. Z. 235 (2000) 569-589. Zbl0965.49003MR1800213
  12. [12] G. Crasta and A. Malusa, Euler–Lagrange inclusions and existence of minimizers for a class of non-coercive variational problems. J. Convex Anal. 7 (2000) 167-181. Zbl0956.49008
  13. [13] G. Crasta and A. Malusa, Non-convex minimization problems for functionals defined on vector valued functions. J. Math. Anal. Appl. 254 (2001) 538-557. Zbl1093.49501MR1805523
  14. [14] B. Dacorogna and P. Marcellini, Existence of minimizers for non-quasiconvex integrals. Arch. Rational Mech. Anal. 131 (1995) 359-399. Zbl0837.49002MR1354700
  15. [15] B. Kawohl, J. Stara and G. Wittum, Analysis and numerical studies of a problem of shape design. Arch. Rational Mech. Anal. 114 (1991) 349-363. Zbl0726.65071MR1100800
  16. [16] R. Kohn and G. Strang, Optimal design and relaxation of variational problems, I, II and III. Comm. Pure Appl. Math. 39 (1976) 113-137, 139-182, 353-377. Zbl0621.49008MR820342
  17. [17] P.L. Lions, Generalized solutions of Hamilton–Jacobi equations. Pitman, London, Pitman Res. Notes Math. Ser. 69 (1982). Zbl0497.35001
  18. [18] E. Mascolo and R. Schianchi, Existence theorems for nonconvex problems J. Math. Pures Appl. 62 (1983) 349-359. Zbl0522.49001MR718948
  19. [19] R.T. Rockafellar, Convex Analysis. Princeton Univ. Press, Princeton (1970). Zbl0193.18401
  20. [20] G. Treu, An existence result for a class of non convex problems of the Calculus of Variations. J. Convex Anal. 5 (1998) 31-44. Zbl0908.49013MR1649421
  21. [21] M. Vornicescu, A variational problem on subsets of n . Proc. Roy. Soc. Edinburg Sect. A 127 (1997) 1089-1101. Zbl0920.49002MR1475648

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.