Eventual monotonicity and convergence to travelling fronts for the solutions of parabolic equations in cylinders

Jean-Michel Roquejoffre

Annales de l'I.H.P. Analyse non linéaire (1997)

  • Volume: 14, Issue: 4, page 499-552
  • ISSN: 0294-1449

How to cite

top

Roquejoffre, Jean-Michel. "Eventual monotonicity and convergence to travelling fronts for the solutions of parabolic equations in cylinders." Annales de l'I.H.P. Analyse non linéaire 14.4 (1997): 499-552. <http://eudml.org/doc/78420>.

@article{Roquejoffre1997,
author = {Roquejoffre, Jean-Michel},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {multidimensional thermo-diffusive model; extinction problems},
language = {eng},
number = {4},
pages = {499-552},
publisher = {Gauthier-Villars},
title = {Eventual monotonicity and convergence to travelling fronts for the solutions of parabolic equations in cylinders},
url = {http://eudml.org/doc/78420},
volume = {14},
year = {1997},
}

TY - JOUR
AU - Roquejoffre, Jean-Michel
TI - Eventual monotonicity and convergence to travelling fronts for the solutions of parabolic equations in cylinders
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1997
PB - Gauthier-Villars
VL - 14
IS - 4
SP - 499
EP - 552
LA - eng
KW - multidimensional thermo-diffusive model; extinction problems
UR - http://eudml.org/doc/78420
ER -

References

top
  1. [1] S. Agmon and L. Nirenberg, Properties of solutions of ordinary differential equations in Banach space, Comm. Pure Appl. Math., Vol. 16, 1963, pp. 121-239. Zbl0117.10001MR155203
  2. [2] D.G. Aronson and H.F. Weinberger, Nonlinear diffusion in population genetics, combustion and nerve propagation, Partial differential equations and related topics, Lect. Notes in Math., Vol. 446, Springer Verlag, New-York, 1975, pp. 5-49. Zbl0325.35050MR427837
  3. [3] D.G. Aronson and H.F. Weinberger, Multidimensional diffusion arising in population genetics, Adv. Math., Vol. 30, 1978, pp. 33-58. Zbl0407.92014MR511740
  4. [4] H. Berestycki, L.A. Caffarelli and L. Nirenberg, Uniform estimates for regularisations of free boundary problems, Analysis and partial differential equations, C. Sadosky & M. Decker eds., 1990, pp. 567-617. Zbl0702.35252
  5. [5] H. Berestycki and B. Larrouturou, Planar travelling front solutions of reaction-diffusion problems, to appear. Zbl0612.76079
  6. [6] H. Berestycki, B. Larrouturou and P.L. Lions, Multidimensional travelling wave solutions of a flame propagation model, Arch. Rat. Mech. Anal., Vol. 111, 1990, pp. 33-49. Zbl0711.35066MR1051478
  7. [7] H. Berestycki, B. Larrouturou and J.M. Roquejoffre, Stability of travelling fronts in a model for flame propagation, Part I: Linear analysis, Arch. Rat. Mech. Anal., Vol. 117, 1992, pp. 97-117. Zbl0763.76033MR1145107
  8. [8] H. Berestycki and L. Nirenberg, Some qualitative properties of solutions of semilinear equations in cylindrical domains, Analysis et Cetera (dedicated to J. Moser), P. H. Rabinowitz & E. Zehnder eds., Academic Press, New-York, 1990, pp. 115-164. Zbl0705.35004
  9. [9] H. Berestycki and L. Nirenberg, Travelling fronts in cylinders, Ann. IHP, Analyse non linéaire, Vol. 9, 1992, pp. 497-573. Zbl0799.35073MR1191008
  10. [10] H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method, Bol. da So. Brasileira de Matematica, Vol. 22, 1991, pp. 1-37 Zbl0784.35025MR1159383
  11. [11] P.C. Fife and J.B. McLeod, The approach of solutions of nonlinear diffusion equations by travelling front solutions, Arch. Rat. Mech. Anal., Vol. 65, 1977, pp. 335-361. Zbl0361.35035MR442480
  12. [12] A. Friedman, Partial differential equations of parabolic type, Prentice Hall, 1964. Zbl0144.34903MR181836
  13. [13] B. Gidas, W.M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., Vol. 68, 1979, pp. 209-243. Zbl0425.35020MR544879
  14. [14] L. Glangetas and J.M. Roquejoffre, Bifurcations of travelling waves in the thermo-diffusive model for flame propagation, Arch. Rat. Mech. Anal., Vol. 134, 1996, pp. 341-402. Zbl0920.76091MR1414292
  15. [15] 1. C. Gohberg and M.G. Krein, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monog. Vol. 18, Am. Math. Soc., Providence, R.I., 1969. Zbl0181.13504MR246142
  16. [16] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, Springer Verlag, New-York, 1981. Zbl0456.35001MR610244
  17. [17] M.W. Hirsch, Stability and convergence in strongly monotone dynamical systems, J. Reine Angew. Math., Vol. 383, 1988, pp. 1-53. Zbl0624.58017MR921986
  18. [18] A.V. Ivanov, The Harnack inequality for weak solutions of quasilinear parabolic equations of second order, Soviet Math. Dokl., Vol. 8, 1967, pp. 463-466. Zbl0163.33902
  19. [19] C.K.R.T. Jones, Asymptotic behaviour of a reaction-diffusion equation in higher dimensions, Rocky Mountain J. Math., Vol. 13, 1983, pp. 355-364. Zbl0528.35054MR702830
  20. [20] O.A. Ladyzhenskaya, V.A. Solonnikov and N.N. Uralceva, Linear and quasilinear equations of parabolic type, Transl. Math. Monog., Vol. 23, Am. Math. Soc., Providence, R.I, 1968. Zbl0174.15403
  21. [21] P.L. Lions, Structure of the set of steady-state solutions and asymptotic behaviour of semilinear heat equations, J. Diff. Eq., Vol. 53, 1984, pp. 362-386. Zbl0491.35057MR752205
  22. [22] J.F. Mallordy and J.M. Roquejoffre, A parabolic equation of KPP type, SIAM J. Math. Anal., Vol. 26, 1995, pp. 1-20. Zbl0813.35041MR1311879
  23. [23] H. Matano, Strong comparison principles in nonlinear parabolic equations, Nonlinear parabolic equations: Qualitative properties of solutions, L. Boccardo & A. Tesei eds., Pitman Longman1987. Zbl0664.35048
  24. [24] H. Matano, Existence of nontrivial unstable sets for equilibriums in strongly order-preserving dynamical systems, J. Fac. Sci. Univ. Tokyo, Vol. 30, 1983, pp. 645-673. Zbl0545.35042MR731522
  25. [25] A. Pazy, Asymptotic expansions of solutions of ordinary differential equations in Hilbert space, Arch. Rat. Mech. Anal., Vol. 241967, pp. 193-218. Zbl0147.12303MR209618
  26. [26] J.M. Roquejoffre, Stability of travelling fronts in a model for flame propagation, Part II: Nonlinear stability, Arch. Rat. Mech. Anal., Vol. 117, 1992, pp. 119-153. Zbl0763.76034MR1145108
  27. [27] J.M. Roquejoffre, Convergence to travelling waves for solutions of a class of semilinear parabolic equations, J. Diff. Eq., Vol. 108, 1994, pp. 262-295. Zbl0806.35093MR1270581
  28. [28] J.M. Roquejoffre and D. Terman, On the stability of steady planar premixed flames, Nonlinear analysis, TMA, Vol. 22, 1994, pp. 137-154. Zbl0802.35071MR1258953
  29. [29] D.H. Sattinger, Stability of waves of nonlinear parabolic systems, Adv. Math., Vol. 22, 1976, pp. 312-355. Zbl0344.35051MR435602
  30. [30] J. Smoller, Shock waves and reaction diffusion equations, Grund. math. Wiss., Vol. 258, SPRINGER Verlag. Zbl0508.35002MR688146
  31. [31] H.B. Stewart, Generation of analytic semigroups by strongly elliptic operators under general boundary conditions, Trans. Am. Math. Soc., Vol. 259, 1980, pp. 299-310. Zbl0451.35033MR561838
  32. [32] J.M. Vega, Multidimensional travelling wave fronts in a model from combustion theory and in related problems, Differential and Integral equations, Vol. 61993, pp. 131-155. Zbl0786.35080
  33. [33] J.B. Zeldovich and D.A. Frank-Kamenetskii, A theory of thermal propagation of flame, Acta Physiochimica URSS, Vol. 9, 1938. 

Citations in EuDML Documents

top
  1. Emmanuel Risler, Global convergence toward traveling fronts in nonlinear parabolic systems with a gradient structure
  2. François Hamel, Régis Monneau, Jean-Michel Roquejoffre, Stability of travelling waves in a model for conical flames in two space dimensions
  3. Thierry Gallay, Romain Joly, Global stability of travelling fronts for a damped wave equation with bistable nonlinearity
  4. James Nolen, Lenya Ryzhik, Traveling waves in a one-dimensional heterogeneous medium
  5. François Hamel, Formules min-max pour les vitesses d'ondes progressives multidimensionnelles

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.