Eventual monotonicity and convergence to travelling fronts for the solutions of parabolic equations in cylinders
Annales de l'I.H.P. Analyse non linéaire (1997)
- Volume: 14, Issue: 4, page 499-552
- ISSN: 0294-1449
Access Full Article
topHow to cite
topRoquejoffre, Jean-Michel. "Eventual monotonicity and convergence to travelling fronts for the solutions of parabolic equations in cylinders." Annales de l'I.H.P. Analyse non linéaire 14.4 (1997): 499-552. <http://eudml.org/doc/78420>.
@article{Roquejoffre1997,
author = {Roquejoffre, Jean-Michel},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {multidimensional thermo-diffusive model; extinction problems},
language = {eng},
number = {4},
pages = {499-552},
publisher = {Gauthier-Villars},
title = {Eventual monotonicity and convergence to travelling fronts for the solutions of parabolic equations in cylinders},
url = {http://eudml.org/doc/78420},
volume = {14},
year = {1997},
}
TY - JOUR
AU - Roquejoffre, Jean-Michel
TI - Eventual monotonicity and convergence to travelling fronts for the solutions of parabolic equations in cylinders
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1997
PB - Gauthier-Villars
VL - 14
IS - 4
SP - 499
EP - 552
LA - eng
KW - multidimensional thermo-diffusive model; extinction problems
UR - http://eudml.org/doc/78420
ER -
References
top- [1] S. Agmon and L. Nirenberg, Properties of solutions of ordinary differential equations in Banach space, Comm. Pure Appl. Math., Vol. 16, 1963, pp. 121-239. Zbl0117.10001MR155203
- [2] D.G. Aronson and H.F. Weinberger, Nonlinear diffusion in population genetics, combustion and nerve propagation, Partial differential equations and related topics, Lect. Notes in Math., Vol. 446, Springer Verlag, New-York, 1975, pp. 5-49. Zbl0325.35050MR427837
- [3] D.G. Aronson and H.F. Weinberger, Multidimensional diffusion arising in population genetics, Adv. Math., Vol. 30, 1978, pp. 33-58. Zbl0407.92014MR511740
- [4] H. Berestycki, L.A. Caffarelli and L. Nirenberg, Uniform estimates for regularisations of free boundary problems, Analysis and partial differential equations, C. Sadosky & M. Decker eds., 1990, pp. 567-617. Zbl0702.35252
- [5] H. Berestycki and B. Larrouturou, Planar travelling front solutions of reaction-diffusion problems, to appear. Zbl0612.76079
- [6] H. Berestycki, B. Larrouturou and P.L. Lions, Multidimensional travelling wave solutions of a flame propagation model, Arch. Rat. Mech. Anal., Vol. 111, 1990, pp. 33-49. Zbl0711.35066MR1051478
- [7] H. Berestycki, B. Larrouturou and J.M. Roquejoffre, Stability of travelling fronts in a model for flame propagation, Part I: Linear analysis, Arch. Rat. Mech. Anal., Vol. 117, 1992, pp. 97-117. Zbl0763.76033MR1145107
- [8] H. Berestycki and L. Nirenberg, Some qualitative properties of solutions of semilinear equations in cylindrical domains, Analysis et Cetera (dedicated to J. Moser), P. H. Rabinowitz & E. Zehnder eds., Academic Press, New-York, 1990, pp. 115-164. Zbl0705.35004
- [9] H. Berestycki and L. Nirenberg, Travelling fronts in cylinders, Ann. IHP, Analyse non linéaire, Vol. 9, 1992, pp. 497-573. Zbl0799.35073MR1191008
- [10] H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method, Bol. da So. Brasileira de Matematica, Vol. 22, 1991, pp. 1-37 Zbl0784.35025MR1159383
- [11] P.C. Fife and J.B. McLeod, The approach of solutions of nonlinear diffusion equations by travelling front solutions, Arch. Rat. Mech. Anal., Vol. 65, 1977, pp. 335-361. Zbl0361.35035MR442480
- [12] A. Friedman, Partial differential equations of parabolic type, Prentice Hall, 1964. Zbl0144.34903MR181836
- [13] B. Gidas, W.M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., Vol. 68, 1979, pp. 209-243. Zbl0425.35020MR544879
- [14] L. Glangetas and J.M. Roquejoffre, Bifurcations of travelling waves in the thermo-diffusive model for flame propagation, Arch. Rat. Mech. Anal., Vol. 134, 1996, pp. 341-402. Zbl0920.76091MR1414292
- [15] 1. C. Gohberg and M.G. Krein, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monog. Vol. 18, Am. Math. Soc., Providence, R.I., 1969. Zbl0181.13504MR246142
- [16] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, Springer Verlag, New-York, 1981. Zbl0456.35001MR610244
- [17] M.W. Hirsch, Stability and convergence in strongly monotone dynamical systems, J. Reine Angew. Math., Vol. 383, 1988, pp. 1-53. Zbl0624.58017MR921986
- [18] A.V. Ivanov, The Harnack inequality for weak solutions of quasilinear parabolic equations of second order, Soviet Math. Dokl., Vol. 8, 1967, pp. 463-466. Zbl0163.33902
- [19] C.K.R.T. Jones, Asymptotic behaviour of a reaction-diffusion equation in higher dimensions, Rocky Mountain J. Math., Vol. 13, 1983, pp. 355-364. Zbl0528.35054MR702830
- [20] O.A. Ladyzhenskaya, V.A. Solonnikov and N.N. Uralceva, Linear and quasilinear equations of parabolic type, Transl. Math. Monog., Vol. 23, Am. Math. Soc., Providence, R.I, 1968. Zbl0174.15403
- [21] P.L. Lions, Structure of the set of steady-state solutions and asymptotic behaviour of semilinear heat equations, J. Diff. Eq., Vol. 53, 1984, pp. 362-386. Zbl0491.35057MR752205
- [22] J.F. Mallordy and J.M. Roquejoffre, A parabolic equation of KPP type, SIAM J. Math. Anal., Vol. 26, 1995, pp. 1-20. Zbl0813.35041MR1311879
- [23] H. Matano, Strong comparison principles in nonlinear parabolic equations, Nonlinear parabolic equations: Qualitative properties of solutions, L. Boccardo & A. Tesei eds., Pitman Longman1987. Zbl0664.35048
- [24] H. Matano, Existence of nontrivial unstable sets for equilibriums in strongly order-preserving dynamical systems, J. Fac. Sci. Univ. Tokyo, Vol. 30, 1983, pp. 645-673. Zbl0545.35042MR731522
- [25] A. Pazy, Asymptotic expansions of solutions of ordinary differential equations in Hilbert space, Arch. Rat. Mech. Anal., Vol. 241967, pp. 193-218. Zbl0147.12303MR209618
- [26] J.M. Roquejoffre, Stability of travelling fronts in a model for flame propagation, Part II: Nonlinear stability, Arch. Rat. Mech. Anal., Vol. 117, 1992, pp. 119-153. Zbl0763.76034MR1145108
- [27] J.M. Roquejoffre, Convergence to travelling waves for solutions of a class of semilinear parabolic equations, J. Diff. Eq., Vol. 108, 1994, pp. 262-295. Zbl0806.35093MR1270581
- [28] J.M. Roquejoffre and D. Terman, On the stability of steady planar premixed flames, Nonlinear analysis, TMA, Vol. 22, 1994, pp. 137-154. Zbl0802.35071MR1258953
- [29] D.H. Sattinger, Stability of waves of nonlinear parabolic systems, Adv. Math., Vol. 22, 1976, pp. 312-355. Zbl0344.35051MR435602
- [30] J. Smoller, Shock waves and reaction diffusion equations, Grund. math. Wiss., Vol. 258, SPRINGER Verlag. Zbl0508.35002MR688146
- [31] H.B. Stewart, Generation of analytic semigroups by strongly elliptic operators under general boundary conditions, Trans. Am. Math. Soc., Vol. 259, 1980, pp. 299-310. Zbl0451.35033MR561838
- [32] J.M. Vega, Multidimensional travelling wave fronts in a model from combustion theory and in related problems, Differential and Integral equations, Vol. 61993, pp. 131-155. Zbl0786.35080
- [33] J.B. Zeldovich and D.A. Frank-Kamenetskii, A theory of thermal propagation of flame, Acta Physiochimica URSS, Vol. 9, 1938.
Citations in EuDML Documents
top- Emmanuel Risler, Global convergence toward traveling fronts in nonlinear parabolic systems with a gradient structure
- François Hamel, Régis Monneau, Jean-Michel Roquejoffre, Stability of travelling waves in a model for conical flames in two space dimensions
- Thierry Gallay, Romain Joly, Global stability of travelling fronts for a damped wave equation with bistable nonlinearity
- James Nolen, Lenya Ryzhik, Traveling waves in a one-dimensional heterogeneous medium
- François Hamel, Formules min-max pour les vitesses d'ondes progressives multidimensionnelles
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.