Global convergence toward traveling fronts in nonlinear parabolic systems with a gradient structure

Emmanuel Risler

Annales de l'I.H.P. Analyse non linéaire (2008)

  • Volume: 25, Issue: 2, page 381-424
  • ISSN: 0294-1449

How to cite

top

Risler, Emmanuel. "Global convergence toward traveling fronts in nonlinear parabolic systems with a gradient structure." Annales de l'I.H.P. Analyse non linéaire 25.2 (2008): 381-424. <http://eudml.org/doc/78795>.

@article{Risler2008,
author = {Risler, Emmanuel},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {nonlinear parabolic system; gradient structure; global convergence; bistable traveling front; energy functional; maximum principle},
language = {eng},
number = {2},
pages = {381-424},
publisher = {Elsevier},
title = {Global convergence toward traveling fronts in nonlinear parabolic systems with a gradient structure},
url = {http://eudml.org/doc/78795},
volume = {25},
year = {2008},
}

TY - JOUR
AU - Risler, Emmanuel
TI - Global convergence toward traveling fronts in nonlinear parabolic systems with a gradient structure
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 2
SP - 381
EP - 424
LA - eng
KW - nonlinear parabolic system; gradient structure; global convergence; bistable traveling front; energy functional; maximum principle
UR - http://eudml.org/doc/78795
ER -

References

top
  1. [1] A. Ambrosetti, M.L. Bertotti, Homoclinics for second order conservative systems, in: M. Miranda (Ed.), PDE's and Related Subjects, Trento, Italy, 1990, in: Pitman Res. Notes Math. Ser., vol. 269, 1992, pp. 21–37. Zbl0804.34046MR1190931
  2. [2] Berestycki H., Hamel F., Front propagation in periodic excitable media, Comm. Pure Appl. Math.55 (2002) 949-1032. Zbl1024.37054MR1900178
  3. [3] Berestycki H., Larrrouturou B., Lions P.L., Multi-dimensional traveling wave solutions of a flame propagation model, Arch. Rat. Mech. Anal.111 (1990) 33-49. Zbl0711.35066MR1051478
  4. [4] Chen X., Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations2 (1997) 125-160. Zbl1023.35513MR1424765
  5. [5] Feireisl E., Bounded, locally compact global attractors for semilinear damped wave equations on R n , J. Diff. Int. Eq.9 (1996) 1147-1156. Zbl0858.35084MR1392099
  6. [6] Fife P., Long Time Behavior of Solutions of Bistable Nonlinear Diffusion Equations, Arch. Rat. Mech. Anal.70 (1979) 31-46. Zbl0435.35045MR535630
  7. [7] Fife P., McLeod J.B., The approach of solutions of nonlinear diffusion equations to traveling front solutions, Arch. Rat. Mech. Anal.65 (1977) 335-361. Zbl0361.35035MR442480
  8. [8] Fife P., McLeod J.B., A phase plane discussion of convergence to traveling fronts for nonlinear diffusion, Arch. Rat. Mech. Anal.75 (1981) 281-314. Zbl0459.35044MR607901
  9. [9] Gallay Th., Convergence to traveling waves in damped hyperbolic equations, in: Fiedler B., Gröger K., Sprekels J. (Eds.), International Conference on Differential Equations, vol. 1, Berlin 1999, World Scientific, 2000, pp. 787-793. Zbl0969.35094MR1870237
  10. [10] Th. Gallay, R. Joly, Global stability of travelling fronts for a damped wave equation with bistable nonlinearity, Preprint. Zbl1169.35041MR2518894
  11. [11] Gallay Th., Risler E., A variational proof of global stability for bistable traveling waves, Diff. Int. Equ.20 (8) (2007) 901-926. Zbl1212.35210MR2339843
  12. [12] Gallay Th., Slijepcevic̀ S., Energy flow in extended gradient partial differential equations, J. Dyn. Diff. Equ.13 (2001) 4. Zbl1003.35085MR1860285
  13. [13] Ginibre J., Velo G., The Cauchy problem in local spaces for the complex Ginzburg–Landau equation, II. Contraction methods, Comm. Math. Phys.187 (1997) 45-79. Zbl0889.35046MR1463822
  14. [14] Heinze S., A variational approach to traveling waves, Technical Report 85, Max Planck Institute for Mathematical Sciences, Leipzig, 2001. Zbl0986.35051
  15. [15] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, 1981. Zbl0456.35001MR610244
  16. [16] Jendoubi M.A., Convergence of global and bounded solutions of the wave equation with linear dissipation and analytic nonlinearity, J. Diff. Equ.144 (1998) 302-312. Zbl0912.35028MR1616964
  17. [17] Kato T., The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rat. Mech. Anal.58 (1975) 181-205. Zbl0343.35056MR390516
  18. [18] Kelley A., The stable, center stable, center, center unstable and unstable manifolds, J. Diff. Equ.3 (1967) 546-570. Zbl0173.11001MR221044
  19. [19] Kolmogorov A.N., Petrovskii I.G., Piskunov N.S., A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem, Bjul. Moskovskovo Gos. Univ.17 (1937) 1-72. 
  20. [20] Mielke A., The complex Ginzburg–Landau equation on large and unbounded domains: sharper bounds and attractors, Nonlinearity10 (1997) 199-222. Zbl0905.35043MR1430749
  21. [21] Mielke A., Schneider G., Attractors for modulation equations on unbounded domains – existence and comparison, Nonlinearity8 (1995) 743-768. Zbl0833.35016MR1355041
  22. [22] Muratov C.B., A global variational structure and propagation of disturbances in reaction–diffusion systems of gradient type, Disc. Cont. Dyn. Syst. Ser. B4 (2004) 867-892. Zbl1069.35031MR2082914
  23. [23] Ogiwara T., Matano H., Monotonicity and convergence results in order preserving systems in the presence of symmetry, Disc. Cont. Dyn. Syst.5 (1999) 1-34. Zbl0958.37061MR1664441
  24. [24] Ogiwara T., Matano H., Stability analysis in order-preserving systems in the presence of symmetry, Proc. Roy. Soc. Edinburgh Sect. A129 (2) (1999) 395-438. Zbl0931.35080MR1686708
  25. [25] E. Risler, A global relaxation result for bistable solutions of spatially extended gradient-like systems in one unbounded spatial dimension, in preparation. 
  26. [26] E. Risler, Global behavior of bistable solutions of nonlinear parabolic systems with a gradient structure, in preparation. Zbl1152.35047
  27. [27] Roquejoffre J.-M., Eventual monotonicity and convergence to traveling fronts for the solutions of parabolic equations in cylinders, Ann. Inst. H. Poincare Anal. Non Lineaire14 (1997) 499-552. Zbl0884.35013MR1464532
  28. [28] Vega J.-M., Multidimensional traveling fronts in a model from combustion theory and related problems, Diff. Int. Eq.6 (1993) 131-155. Zbl0786.35080MR1190170
  29. [29] Volpert A.I., Volpert V.A., Volpert V.A., Traveling Wave Solutions of Parabolic Systems, Translations of Mathematical Monographs, vol. 140, AMS, Providence, RI, 1994. Zbl1001.35060MR1297766
  30. [30] Xin X., Existence and uniqueness of traveling waves in a reaction–diffusion equation with combustion nonlinearity, Indiana Univ. Math. J.40 (3) (1991) 985-1008. Zbl0727.35070MR1129338

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.