Global convergence toward traveling fronts in nonlinear parabolic systems with a gradient structure
Annales de l'I.H.P. Analyse non linéaire (2008)
- Volume: 25, Issue: 2, page 381-424
- ISSN: 0294-1449
Access Full Article
topHow to cite
topRisler, Emmanuel. "Global convergence toward traveling fronts in nonlinear parabolic systems with a gradient structure." Annales de l'I.H.P. Analyse non linéaire 25.2 (2008): 381-424. <http://eudml.org/doc/78795>.
@article{Risler2008,
author = {Risler, Emmanuel},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {nonlinear parabolic system; gradient structure; global convergence; bistable traveling front; energy functional; maximum principle},
language = {eng},
number = {2},
pages = {381-424},
publisher = {Elsevier},
title = {Global convergence toward traveling fronts in nonlinear parabolic systems with a gradient structure},
url = {http://eudml.org/doc/78795},
volume = {25},
year = {2008},
}
TY - JOUR
AU - Risler, Emmanuel
TI - Global convergence toward traveling fronts in nonlinear parabolic systems with a gradient structure
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 2
SP - 381
EP - 424
LA - eng
KW - nonlinear parabolic system; gradient structure; global convergence; bistable traveling front; energy functional; maximum principle
UR - http://eudml.org/doc/78795
ER -
References
top- [1] A. Ambrosetti, M.L. Bertotti, Homoclinics for second order conservative systems, in: M. Miranda (Ed.), PDE's and Related Subjects, Trento, Italy, 1990, in: Pitman Res. Notes Math. Ser., vol. 269, 1992, pp. 21–37. Zbl0804.34046MR1190931
- [2] Berestycki H., Hamel F., Front propagation in periodic excitable media, Comm. Pure Appl. Math.55 (2002) 949-1032. Zbl1024.37054MR1900178
- [3] Berestycki H., Larrrouturou B., Lions P.L., Multi-dimensional traveling wave solutions of a flame propagation model, Arch. Rat. Mech. Anal.111 (1990) 33-49. Zbl0711.35066MR1051478
- [4] Chen X., Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations2 (1997) 125-160. Zbl1023.35513MR1424765
- [5] Feireisl E., Bounded, locally compact global attractors for semilinear damped wave equations on , J. Diff. Int. Eq.9 (1996) 1147-1156. Zbl0858.35084MR1392099
- [6] Fife P., Long Time Behavior of Solutions of Bistable Nonlinear Diffusion Equations, Arch. Rat. Mech. Anal.70 (1979) 31-46. Zbl0435.35045MR535630
- [7] Fife P., McLeod J.B., The approach of solutions of nonlinear diffusion equations to traveling front solutions, Arch. Rat. Mech. Anal.65 (1977) 335-361. Zbl0361.35035MR442480
- [8] Fife P., McLeod J.B., A phase plane discussion of convergence to traveling fronts for nonlinear diffusion, Arch. Rat. Mech. Anal.75 (1981) 281-314. Zbl0459.35044MR607901
- [9] Gallay Th., Convergence to traveling waves in damped hyperbolic equations, in: Fiedler B., Gröger K., Sprekels J. (Eds.), International Conference on Differential Equations, vol. 1, Berlin 1999, World Scientific, 2000, pp. 787-793. Zbl0969.35094MR1870237
- [10] Th. Gallay, R. Joly, Global stability of travelling fronts for a damped wave equation with bistable nonlinearity, Preprint. Zbl1169.35041MR2518894
- [11] Gallay Th., Risler E., A variational proof of global stability for bistable traveling waves, Diff. Int. Equ.20 (8) (2007) 901-926. Zbl1212.35210MR2339843
- [12] Gallay Th., Slijepcevic̀ S., Energy flow in extended gradient partial differential equations, J. Dyn. Diff. Equ.13 (2001) 4. Zbl1003.35085MR1860285
- [13] Ginibre J., Velo G., The Cauchy problem in local spaces for the complex Ginzburg–Landau equation, II. Contraction methods, Comm. Math. Phys.187 (1997) 45-79. Zbl0889.35046MR1463822
- [14] Heinze S., A variational approach to traveling waves, Technical Report 85, Max Planck Institute for Mathematical Sciences, Leipzig, 2001. Zbl0986.35051
- [15] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, 1981. Zbl0456.35001MR610244
- [16] Jendoubi M.A., Convergence of global and bounded solutions of the wave equation with linear dissipation and analytic nonlinearity, J. Diff. Equ.144 (1998) 302-312. Zbl0912.35028MR1616964
- [17] Kato T., The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rat. Mech. Anal.58 (1975) 181-205. Zbl0343.35056MR390516
- [18] Kelley A., The stable, center stable, center, center unstable and unstable manifolds, J. Diff. Equ.3 (1967) 546-570. Zbl0173.11001MR221044
- [19] Kolmogorov A.N., Petrovskii I.G., Piskunov N.S., A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem, Bjul. Moskovskovo Gos. Univ.17 (1937) 1-72.
- [20] Mielke A., The complex Ginzburg–Landau equation on large and unbounded domains: sharper bounds and attractors, Nonlinearity10 (1997) 199-222. Zbl0905.35043MR1430749
- [21] Mielke A., Schneider G., Attractors for modulation equations on unbounded domains – existence and comparison, Nonlinearity8 (1995) 743-768. Zbl0833.35016MR1355041
- [22] Muratov C.B., A global variational structure and propagation of disturbances in reaction–diffusion systems of gradient type, Disc. Cont. Dyn. Syst. Ser. B4 (2004) 867-892. Zbl1069.35031MR2082914
- [23] Ogiwara T., Matano H., Monotonicity and convergence results in order preserving systems in the presence of symmetry, Disc. Cont. Dyn. Syst.5 (1999) 1-34. Zbl0958.37061MR1664441
- [24] Ogiwara T., Matano H., Stability analysis in order-preserving systems in the presence of symmetry, Proc. Roy. Soc. Edinburgh Sect. A129 (2) (1999) 395-438. Zbl0931.35080MR1686708
- [25] E. Risler, A global relaxation result for bistable solutions of spatially extended gradient-like systems in one unbounded spatial dimension, in preparation.
- [26] E. Risler, Global behavior of bistable solutions of nonlinear parabolic systems with a gradient structure, in preparation. Zbl1152.35047
- [27] Roquejoffre J.-M., Eventual monotonicity and convergence to traveling fronts for the solutions of parabolic equations in cylinders, Ann. Inst. H. Poincare Anal. Non Lineaire14 (1997) 499-552. Zbl0884.35013MR1464532
- [28] Vega J.-M., Multidimensional traveling fronts in a model from combustion theory and related problems, Diff. Int. Eq.6 (1993) 131-155. Zbl0786.35080MR1190170
- [29] Volpert A.I., Volpert V.A., Volpert V.A., Traveling Wave Solutions of Parabolic Systems, Translations of Mathematical Monographs, vol. 140, AMS, Providence, RI, 1994. Zbl1001.35060MR1297766
- [30] Xin X., Existence and uniqueness of traveling waves in a reaction–diffusion equation with combustion nonlinearity, Indiana Univ. Math. J.40 (3) (1991) 985-1008. Zbl0727.35070MR1129338
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.