Nested axi-symmetric vortex rings
Annales de l'I.H.P. Analyse non linéaire (1997)
- Volume: 14, Issue: 6, page 787-797
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBuffoni, B.. "Nested axi-symmetric vortex rings." Annales de l'I.H.P. Analyse non linéaire 14.6 (1997): 787-797. <http://eudml.org/doc/78428>.
@article{Buffoni1997,
author = {Buffoni, B.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {coaxial vortex rings; existence; Hill's vortex},
language = {eng},
number = {6},
pages = {787-797},
publisher = {Gauthier-Villars},
title = {Nested axi-symmetric vortex rings},
url = {http://eudml.org/doc/78428},
volume = {14},
year = {1997},
}
TY - JOUR
AU - Buffoni, B.
TI - Nested axi-symmetric vortex rings
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1997
PB - Gauthier-Villars
VL - 14
IS - 6
SP - 787
EP - 797
LA - eng
KW - coaxial vortex rings; existence; Hill's vortex
UR - http://eudml.org/doc/78428
ER -
References
top- [1] S. Alama and Y.Y. Li, On multibump bound states for certain semilinear elliptic equations, J. Diff. Eqns, Vol. 96, 1992, pp. 89-115. Zbl0766.35009MR1206338
- [2] A. Ambrosetti and M. Struwe, Existence of steady vortex rings in an ideal fluid, Arch. Rat. Mech. Anal., Vol. 108, 1989, pp. 97-109. Zbl0694.76012MR1011553
- [3] C.J. Amick and L.E. Fraenkel, The uniqueness of Hill's spherical vortex, Arch. Rat. Mech. Anal., Vol. 92, 1986, pp. 91-119. Zbl0609.76018MR816615
- [4] C.J. Amick and L.E. Fraenkel, The uniqueness of a Family of Steady Vortex rings, Arch. Rat. Mech. Anal., Vol. 100, 1988, pp. 207-241. Zbl0694.76011MR918795
- [5] C.J. Amick and R.E.L. Turner, A global branch of steady vortex rings, J. reine angew. Math., Vol. 384, 1988, pp. 1-23. Zbl0628.76032MR929976
- [6] S. Angenent, The shadowing lemma for elliptic PDE, Dynamics of Infinite Dimensional Systems, S. N. Chow and J. K. Hale eds., F37, 1987. Zbl0653.35030MR921893
- [7] M.S. Berger, Nonlinearity and functional analysis, Academic Press, 1977. Zbl0368.47001MR488101
- [8] M.S. Berger, Mathematical structures of nonlinear science, Kluver Academic Publishers, Dordrecht, 1990. Zbl0702.58005MR1071172
- [9] U. Bessi, Homoclinic and period-doubling bifurcations for damped systems, Ann. Inst. Henri Poincaré : analyse non linéaire, Vol. 12, 1995, pp. 1-25. Zbl0836.34044MR1320566
- [10] B. Buffoniand É. SÉRÉ, A global condition for quasi-random behaviour in a class of conservative systems, Commun. Pure Appl. Math., Vol. 49, 1996, pp. 285-305. Zbl0860.58027MR1374173
- [11] G.R. Burton, Rearrangements of functions, maximisation of convex functionals, and vortex rings, Math. Ann., Vol. 276, 1987, pp. 225-253. Zbl0592.35049MR870963
- [12] G.R. Burton, Variational problems on classes of rearrangements and multiple configurations for steady vortices, Ann. Inst. Henri Poincaré: Analyse non lin., Vol. 6, 1989, pp. 295-319. Zbl0677.49005MR998605
- [13] G.R. Burton, Uniqueness for the circular vortex-pair in a uniform flow, Proceedings of the Royal Society of London Series A, Vol. 452, 1996, pp. 2343-2350. Zbl0872.76019MR1421744
- [14] A.V. Buryak and N.N. Akhmediev, Stability-criterion for stationary bound-states of solitons with radiationless oscillating tails, Physical Review E, Vol. 51, 1995, pp. 3572-3578.
- [15] V. Coti Zelati and P.H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on Rn, Comm. Pure Appl. Math., Vol. 45, 1992, pp. 1217-1269. Zbl0785.35029MR1181725
- [16] M.J. Esteban, Nonlinear elliptic problems in strip-like domains: symmetry of positive vortex rings, Nonlinear Analysis TMA, Vol. 7, 1983, pp. 365-379. Zbl0513.35035MR696736
- [17] I. Fonseca and W. Gangbo, Degree Theory in Analysis and Applications, Oxford University Press, 1995. Zbl0852.47030MR1373430
- [18] L.E. Fraenkel, On steady vortex rings of small cross-section in an ideal fluid, Proc. Roy. Soc. Lon. A, Vol. 316, 1970, pp. 29-62. Zbl0195.55101
- [19] L.E. Fraenkel, Examples of steady vortex rings of small cross-section in an ideal fluid, J. Fluid Mech., Vol. 51, 1972, pp. 119-135. Zbl0231.76013
- [20] L.E. Fraenkel, On steady vortex rings with swirl and a Sobolev inequality, C. Bandle et al. (Editors), Progress in Partial Differential Eqns: Calculus of Variations, Applications. LONGMAN, 1992. Zbl0821.46041MR1194186
- [21] L.E. Fraenkel and M.S. Berger, A global theory of steady vortex rings in an ideal fluid, Acta Math., Vol. 132, 1974, pp. 13-51. Zbl0282.76014MR422916
- [22] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 1977. Zbl0361.35003MR473443
- [23] H. Lamb, Hydrodynamics, Cambridge University Press, 1932. MR1317348JFM58.1298.04
- [24] Y.Y. Li, On -Δu = k(x)u5 in R3, Comm. Pure Appl. Math., Vol. 46, 1993, pp. 303-340. Zbl0799.35068
- [25] W.-M. Ni, On the existence of global vortex rings, J. d'Analyse Math., Vol. 37, 1980, pp. 208-247. Zbl0457.76020MR583638
- [26] J. Norbury, A steady vortex ring close to Hill's spherical vortex, Proc. Cambridge Philos. Soc., Vol. 72, 1972, pp. 253-284. Zbl0256.76016MR302044
- [27] K.J. Palmer, Exponential Dichotomies and Transversal Homoclinic Points, JDE, Vol. 55, 1984, pp. 225-256. Zbl0508.58035MR764125
- [28] É. Séré, Looking for the Bernoulli shift, Ann. Inst. H. Poincaré, Anal. Non Linéaire, Vol. 10, 1993, pp. 561-590. Zbl0803.58013MR1249107
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.