Nested axi-symmetric vortex rings

B. Buffoni

Annales de l'I.H.P. Analyse non linéaire (1997)

  • Volume: 14, Issue: 6, page 787-797
  • ISSN: 0294-1449

How to cite

top

Buffoni, B.. "Nested axi-symmetric vortex rings." Annales de l'I.H.P. Analyse non linéaire 14.6 (1997): 787-797. <http://eudml.org/doc/78428>.

@article{Buffoni1997,
author = {Buffoni, B.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {coaxial vortex rings; existence; Hill's vortex},
language = {eng},
number = {6},
pages = {787-797},
publisher = {Gauthier-Villars},
title = {Nested axi-symmetric vortex rings},
url = {http://eudml.org/doc/78428},
volume = {14},
year = {1997},
}

TY - JOUR
AU - Buffoni, B.
TI - Nested axi-symmetric vortex rings
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1997
PB - Gauthier-Villars
VL - 14
IS - 6
SP - 787
EP - 797
LA - eng
KW - coaxial vortex rings; existence; Hill's vortex
UR - http://eudml.org/doc/78428
ER -

References

top
  1. [1] S. Alama and Y.Y. Li, On multibump bound states for certain semilinear elliptic equations, J. Diff. Eqns, Vol. 96, 1992, pp. 89-115. Zbl0766.35009MR1206338
  2. [2] A. Ambrosetti and M. Struwe, Existence of steady vortex rings in an ideal fluid, Arch. Rat. Mech. Anal., Vol. 108, 1989, pp. 97-109. Zbl0694.76012MR1011553
  3. [3] C.J. Amick and L.E. Fraenkel, The uniqueness of Hill's spherical vortex, Arch. Rat. Mech. Anal., Vol. 92, 1986, pp. 91-119. Zbl0609.76018MR816615
  4. [4] C.J. Amick and L.E. Fraenkel, The uniqueness of a Family of Steady Vortex rings, Arch. Rat. Mech. Anal., Vol. 100, 1988, pp. 207-241. Zbl0694.76011MR918795
  5. [5] C.J. Amick and R.E.L. Turner, A global branch of steady vortex rings, J. reine angew. Math., Vol. 384, 1988, pp. 1-23. Zbl0628.76032MR929976
  6. [6] S. Angenent, The shadowing lemma for elliptic PDE, Dynamics of Infinite Dimensional Systems, S. N. Chow and J. K. Hale eds., F37, 1987. Zbl0653.35030MR921893
  7. [7] M.S. Berger, Nonlinearity and functional analysis, Academic Press, 1977. Zbl0368.47001MR488101
  8. [8] M.S. Berger, Mathematical structures of nonlinear science, Kluver Academic Publishers, Dordrecht, 1990. Zbl0702.58005MR1071172
  9. [9] U. Bessi, Homoclinic and period-doubling bifurcations for damped systems, Ann. Inst. Henri Poincaré : analyse non linéaire, Vol. 12, 1995, pp. 1-25. Zbl0836.34044MR1320566
  10. [10] B. Buffoniand É. SÉRÉ, A global condition for quasi-random behaviour in a class of conservative systems, Commun. Pure Appl. Math., Vol. 49, 1996, pp. 285-305. Zbl0860.58027MR1374173
  11. [11] G.R. Burton, Rearrangements of functions, maximisation of convex functionals, and vortex rings, Math. Ann., Vol. 276, 1987, pp. 225-253. Zbl0592.35049MR870963
  12. [12] G.R. Burton, Variational problems on classes of rearrangements and multiple configurations for steady vortices, Ann. Inst. Henri Poincaré: Analyse non lin., Vol. 6, 1989, pp. 295-319. Zbl0677.49005MR998605
  13. [13] G.R. Burton, Uniqueness for the circular vortex-pair in a uniform flow, Proceedings of the Royal Society of London Series A, Vol. 452, 1996, pp. 2343-2350. Zbl0872.76019MR1421744
  14. [14] A.V. Buryak and N.N. Akhmediev, Stability-criterion for stationary bound-states of solitons with radiationless oscillating tails, Physical Review E, Vol. 51, 1995, pp. 3572-3578. 
  15. [15] V. Coti Zelati and P.H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on Rn, Comm. Pure Appl. Math., Vol. 45, 1992, pp. 1217-1269. Zbl0785.35029MR1181725
  16. [16] M.J. Esteban, Nonlinear elliptic problems in strip-like domains: symmetry of positive vortex rings, Nonlinear Analysis TMA, Vol. 7, 1983, pp. 365-379. Zbl0513.35035MR696736
  17. [17] I. Fonseca and W. Gangbo, Degree Theory in Analysis and Applications, Oxford University Press, 1995. Zbl0852.47030MR1373430
  18. [18] L.E. Fraenkel, On steady vortex rings of small cross-section in an ideal fluid, Proc. Roy. Soc. Lon. A, Vol. 316, 1970, pp. 29-62. Zbl0195.55101
  19. [19] L.E. Fraenkel, Examples of steady vortex rings of small cross-section in an ideal fluid, J. Fluid Mech., Vol. 51, 1972, pp. 119-135. Zbl0231.76013
  20. [20] L.E. Fraenkel, On steady vortex rings with swirl and a Sobolev inequality, C. Bandle et al. (Editors), Progress in Partial Differential Eqns: Calculus of Variations, Applications. LONGMAN, 1992. Zbl0821.46041MR1194186
  21. [21] L.E. Fraenkel and M.S. Berger, A global theory of steady vortex rings in an ideal fluid, Acta Math., Vol. 132, 1974, pp. 13-51. Zbl0282.76014MR422916
  22. [22] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 1977. Zbl0361.35003MR473443
  23. [23] H. Lamb, Hydrodynamics, Cambridge University Press, 1932. MR1317348JFM58.1298.04
  24. [24] Y.Y. Li, On -Δu = k(x)u5 in R3, Comm. Pure Appl. Math., Vol. 46, 1993, pp. 303-340. Zbl0799.35068
  25. [25] W.-M. Ni, On the existence of global vortex rings, J. d'Analyse Math., Vol. 37, 1980, pp. 208-247. Zbl0457.76020MR583638
  26. [26] J. Norbury, A steady vortex ring close to Hill's spherical vortex, Proc. Cambridge Philos. Soc., Vol. 72, 1972, pp. 253-284. Zbl0256.76016MR302044
  27. [27] K.J. Palmer, Exponential Dichotomies and Transversal Homoclinic Points, JDE, Vol. 55, 1984, pp. 225-256. Zbl0508.58035MR764125
  28. [28] É. Séré, Looking for the Bernoulli shift, Ann. Inst. H. Poincaré, Anal. Non Linéaire, Vol. 10, 1993, pp. 561-590. Zbl0803.58013MR1249107

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.