Long-time behavior of solutions to a class of quasilinear parabolic equations with random coefficients
Igor D. Chueshov; Pierre-A. Vuillermot
Annales de l'I.H.P. Analyse non linéaire (1998)
- Volume: 15, Issue: 2, page 191-232
- ISSN: 0294-1449
Access Full Article
topHow to cite
topChueshov, Igor D., and Vuillermot, Pierre-A.. "Long-time behavior of solutions to a class of quasilinear parabolic equations with random coefficients." Annales de l'I.H.P. Analyse non linéaire 15.2 (1998): 191-232. <http://eudml.org/doc/78436>.
@article{Chueshov1998,
author = {Chueshov, Igor D., Vuillermot, Pierre-A.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {stochastic parabolic Neumann problems},
language = {eng},
number = {2},
pages = {191-232},
publisher = {Gauthier-Villars},
title = {Long-time behavior of solutions to a class of quasilinear parabolic equations with random coefficients},
url = {http://eudml.org/doc/78436},
volume = {15},
year = {1998},
}
TY - JOUR
AU - Chueshov, Igor D.
AU - Vuillermot, Pierre-A.
TI - Long-time behavior of solutions to a class of quasilinear parabolic equations with random coefficients
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1998
PB - Gauthier-Villars
VL - 15
IS - 2
SP - 191
EP - 232
LA - eng
KW - stochastic parabolic Neumann problems
UR - http://eudml.org/doc/78436
ER -
References
top- [1] R.A. Adams, "Sobolev Spaces", Academic Press, New York-London, 1975. Zbl0314.46030MR450957
- [2] D.G. Aronson and H.F. Weinberger, Nonlinear Dynamics in Population Genetics, Combustion and Nerve Pulse Propagation. In Partial Differential Equations and Related Topics, J. A. Goldstein, Ed., pp. 5-49, Lecture Notes in Mathematics, Vol. 446, Springer-Verlag, Berlin-Heidelberg-New York, 1975. Zbl0325.35050MR427837
- [3] S.R. Bernfeld, Y.Y. Hu and P. Vuillermot, Homogénéisation Spatiale et Équivalence Asymptotique pour une Classe d'Équations Paraboliques Semilinéaires Non Autonomes, C. R. Acad. Sci. Paris, Vol. 320, Série I, 1995, pp. 859-862. Zbl0840.35046MR1326696
- [4] S.R. Bernfeld, Y.Y. Hu and P. Vuillermot, Large-Time Asymptotic Equivalence for a Class of Non-Autonomous Semilinear Parabolic Equations, Bull. Sci. Math., 1998 (in press). Zbl0912.35027MR1639856
- [5] H. Brézis, Analyse Fonctionnelle : Théorie et Applications, Masson. Paris-New York, 1983. Zbl0511.46001MR697382
- [6] P. Brunowski, P. Polacik and B. Santsede, Convergence in General Periodic Parabolic Equations in One-Space Dimension, Nonlinear Analysis TMA. Vol. 18, No. 3. 1992. pp. 209-215. Zbl0796.35009MR1148285
- [7] I.D. Chueshov and P. Vuillermot, On the Large-Time Dynamics of a Class of Random Parabolic Equations, C. R. Acad. Sci. Paris, Vol. 322, Série I, 1996, pp. 1181-1186. Zbl0849.60064MR1396662
- [8] I.D. Chueshov and P. Vuillermot, On the Large-Time Dynamics of a Class of Parabolic Equations Subjected to Homogeneous White Noise: Stratonovitch's Case, C. R. Acad. Sci. Paris, Vol. 323, Série I, 1996, pp. 29-33. Zbl0856.60063MR1401624
- [9] I.D. Chueshov and P. Vuillermot, Long-Time Behavior of Solutions to a Class of Stochastic Parabolic Equations with Homogeneous White Noise: Stratonovitch's Case, 1997 (preprint). Zbl0914.35021
- [10] I.P. Cornfeld, S.V. Fomin and Ya.G. Sinai, Ergodic Theory, Springer-Verlag, Berlin-Heidelberg-New York, 1982. Zbl0493.28007MR832433
- [11] E.N. Dancer and P. Hess, Stable Subharmonic Solutions in Periodic Reaction-Diffusion Equations, J. Differential Equations, Vol. 108, No 1, 1994, pp. 190-200. Zbl0805.35056MR1268358
- [12] E.N. Dancer and P. Hess, Stability of Fixed Points for Order Preserving Discrete-Time Dynamical Systems, J. Reine Angew. Math., Vol. 419, 1991, pp. 125-139. Zbl0728.58018MR1116922
- [13] D. Daners and P. Koch Medina, Abstract Evolution Equations, Periodic Problems and Applications, Pitman Research Notes in Mathematics Series, Langman Sci. Techn., Harlaw, Vol. 279, 1992. Zbl0789.35001MR1204883
- [14] A. Figotin and L. Pastur, Spectra of Random and Almost-Periodic Schrödinger Operators, Springer-Verlag, Berlin-Heidelberg-New York, 1992. Zbl0752.47002MR1223779
- [15] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice Hall, Inc., Englewood Cliffs, N.J., 1964. Zbl0144.34903MR181836
- [16] P. Hess and H.F. Weinberger, Convergence to Spatial-Temporal Clines in the Fisher Equations with Time-Periodic Fitnesses, J. Math. Biol., Vol. 28, No. 1, 1990, pp. 83-98. Zbl0735.35017MR1036413
- [17] P. Hess, Periodic Parabolic Boundary-Value Problems and Positivity, Pitman Research Notes in Mathematics Series, Vol. 247, Langman Sci. Tech., Harlaw, 1990. Zbl0731.35050MR1100011
- [18] T. Kato, Abstract Evolution Equations of Parabolic Type in Banach and Hilbert Spaces, Nagoya Math. Journal, Vol. 19, 1961, pp. 93-125. Zbl0114.06102MR143065
- [19] T. KatoPerturbation Theory for Linear Operators, Springer-Verlag, Berlin-Heidelberg-New York, 1982. Zbl0493.47008MR407617
- [20] O.A. Ladyzenskaya, N.N. Uraltceva and V.A. Solonnikov, Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc. Transl. of Math. Monographs, Vol. 23, 1968.
- [21] J. Neças, Introduction to the Theory of Nonlinear Elliptic Equations, John Wiley and Sons, New York, 1986. Zbl0643.35001MR874752
- [22] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, Berlin-Heidelberg-New York, 1983. Zbl0516.47023MR710486
- [23] B. Simon, Functional Integration and Quantum Physics, Academic Press, New York- London, 1979. Zbl0434.28013MR544188
- [24] P. Takac, Linearly Stable Subharmonics in Strongly Monotone Time-Periodic Dynamical Systems, Proc. Am. Math. Soc., Vol. 115, No. 3, 1992, pp. 691-698. Zbl0755.34039MR1098406
- [25] P. Vuillermot, Almost-Periodic Attractors for a Class of Non-Autonomous Reaction-Diffusion Equations on RN, I. Global Stabilization Processes, J. Differential Equations, Vol. 94, No. 2, 1991, pp. 228-253. Zbl0767.35040MR1137614
- [26] P. Vuillermot, Almost-Periodic Attractors for a Class of Non-Autonomous Reaction-Diffusion Equations on RN, II. Codimension-One Stable Manifolds, Differential and Integral Equations, Vol. 5, No. 3, 1992, pp. 693-720. Zbl0796.35076MR1157497
- [27] P. Vuillermot, Global Exponential Attractors for a Class of Almost-Periodic Parabolic Equations on RN, Proc. Am. Math. Soc., Vol. 116, No. 3, 1992, pp. 775-782. Zbl0802.35081MR1102861
- [28] P. Vuillermot, Almost-Periodic Attractors for a Class of Non-Autonomous Reaction-Diffusion Equations on RN, III. Center Curves and Liapounov Stability, Nonlinear Analysis TMA, Vol. 22. No. 5. 1994, pp. 533-559. Zbl0812.35012MR1266542
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.