Long-time behavior of solutions to a class of quasilinear parabolic equations with random coefficients

Igor D. Chueshov; Pierre-A. Vuillermot

Annales de l'I.H.P. Analyse non linéaire (1998)

  • Volume: 15, Issue: 2, page 191-232
  • ISSN: 0294-1449

How to cite

top

Chueshov, Igor D., and Vuillermot, Pierre-A.. "Long-time behavior of solutions to a class of quasilinear parabolic equations with random coefficients." Annales de l'I.H.P. Analyse non linéaire 15.2 (1998): 191-232. <http://eudml.org/doc/78436>.

@article{Chueshov1998,
author = {Chueshov, Igor D., Vuillermot, Pierre-A.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {stochastic parabolic Neumann problems},
language = {eng},
number = {2},
pages = {191-232},
publisher = {Gauthier-Villars},
title = {Long-time behavior of solutions to a class of quasilinear parabolic equations with random coefficients},
url = {http://eudml.org/doc/78436},
volume = {15},
year = {1998},
}

TY - JOUR
AU - Chueshov, Igor D.
AU - Vuillermot, Pierre-A.
TI - Long-time behavior of solutions to a class of quasilinear parabolic equations with random coefficients
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1998
PB - Gauthier-Villars
VL - 15
IS - 2
SP - 191
EP - 232
LA - eng
KW - stochastic parabolic Neumann problems
UR - http://eudml.org/doc/78436
ER -

References

top
  1. [1] R.A. Adams, "Sobolev Spaces", Academic Press, New York-London, 1975. Zbl0314.46030MR450957
  2. [2] D.G. Aronson and H.F. Weinberger, Nonlinear Dynamics in Population Genetics, Combustion and Nerve Pulse Propagation. In Partial Differential Equations and Related Topics, J. A. Goldstein, Ed., pp. 5-49, Lecture Notes in Mathematics, Vol. 446, Springer-Verlag, Berlin-Heidelberg-New York, 1975. Zbl0325.35050MR427837
  3. [3] S.R. Bernfeld, Y.Y. Hu and P. Vuillermot, Homogénéisation Spatiale et Équivalence Asymptotique pour une Classe d'Équations Paraboliques Semilinéaires Non Autonomes, C. R. Acad. Sci. Paris, Vol. 320, Série I, 1995, pp. 859-862. Zbl0840.35046MR1326696
  4. [4] S.R. Bernfeld, Y.Y. Hu and P. Vuillermot, Large-Time Asymptotic Equivalence for a Class of Non-Autonomous Semilinear Parabolic Equations, Bull. Sci. Math., 1998 (in press). Zbl0912.35027MR1639856
  5. [5] H. Brézis, Analyse Fonctionnelle : Théorie et Applications, Masson. Paris-New York, 1983. Zbl0511.46001MR697382
  6. [6] P. Brunowski, P. Polacik and B. Santsede, Convergence in General Periodic Parabolic Equations in One-Space Dimension, Nonlinear Analysis TMA. Vol. 18, No. 3. 1992. pp. 209-215. Zbl0796.35009MR1148285
  7. [7] I.D. Chueshov and P. Vuillermot, On the Large-Time Dynamics of a Class of Random Parabolic Equations, C. R. Acad. Sci. Paris, Vol. 322, Série I, 1996, pp. 1181-1186. Zbl0849.60064MR1396662
  8. [8] I.D. Chueshov and P. Vuillermot, On the Large-Time Dynamics of a Class of Parabolic Equations Subjected to Homogeneous White Noise: Stratonovitch's Case, C. R. Acad. Sci. Paris, Vol. 323, Série I, 1996, pp. 29-33. Zbl0856.60063MR1401624
  9. [9] I.D. Chueshov and P. Vuillermot, Long-Time Behavior of Solutions to a Class of Stochastic Parabolic Equations with Homogeneous White Noise: Stratonovitch's Case, 1997 (preprint). Zbl0914.35021
  10. [10] I.P. Cornfeld, S.V. Fomin and Ya.G. Sinai, Ergodic Theory, Springer-Verlag, Berlin-Heidelberg-New York, 1982. Zbl0493.28007MR832433
  11. [11] E.N. Dancer and P. Hess, Stable Subharmonic Solutions in Periodic Reaction-Diffusion Equations, J. Differential Equations, Vol. 108, No 1, 1994, pp. 190-200. Zbl0805.35056MR1268358
  12. [12] E.N. Dancer and P. Hess, Stability of Fixed Points for Order Preserving Discrete-Time Dynamical Systems, J. Reine Angew. Math., Vol. 419, 1991, pp. 125-139. Zbl0728.58018MR1116922
  13. [13] D. Daners and P. Koch Medina, Abstract Evolution Equations, Periodic Problems and Applications, Pitman Research Notes in Mathematics Series, Langman Sci. Techn., Harlaw, Vol. 279, 1992. Zbl0789.35001MR1204883
  14. [14] A. Figotin and L. Pastur, Spectra of Random and Almost-Periodic Schrödinger Operators, Springer-Verlag, Berlin-Heidelberg-New York, 1992. Zbl0752.47002MR1223779
  15. [15] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice Hall, Inc., Englewood Cliffs, N.J., 1964. Zbl0144.34903MR181836
  16. [16] P. Hess and H.F. Weinberger, Convergence to Spatial-Temporal Clines in the Fisher Equations with Time-Periodic Fitnesses, J. Math. Biol., Vol. 28, No. 1, 1990, pp. 83-98. Zbl0735.35017MR1036413
  17. [17] P. Hess, Periodic Parabolic Boundary-Value Problems and Positivity, Pitman Research Notes in Mathematics Series, Vol. 247, Langman Sci. Tech., Harlaw, 1990. Zbl0731.35050MR1100011
  18. [18] T. Kato, Abstract Evolution Equations of Parabolic Type in Banach and Hilbert Spaces, Nagoya Math. Journal, Vol. 19, 1961, pp. 93-125. Zbl0114.06102MR143065
  19. [19] T. KatoPerturbation Theory for Linear Operators, Springer-Verlag, Berlin-Heidelberg-New York, 1982. Zbl0493.47008MR407617
  20. [20] O.A. Ladyzenskaya, N.N. Uraltceva and V.A. Solonnikov, Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc. Transl. of Math. Monographs, Vol. 23, 1968. 
  21. [21] J. Neças, Introduction to the Theory of Nonlinear Elliptic Equations, John Wiley and Sons, New York, 1986. Zbl0643.35001MR874752
  22. [22] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, Berlin-Heidelberg-New York, 1983. Zbl0516.47023MR710486
  23. [23] B. Simon, Functional Integration and Quantum Physics, Academic Press, New York- London, 1979. Zbl0434.28013MR544188
  24. [24] P. Takac, Linearly Stable Subharmonics in Strongly Monotone Time-Periodic Dynamical Systems, Proc. Am. Math. Soc., Vol. 115, No. 3, 1992, pp. 691-698. Zbl0755.34039MR1098406
  25. [25] P. Vuillermot, Almost-Periodic Attractors for a Class of Non-Autonomous Reaction-Diffusion Equations on RN, I. Global Stabilization Processes, J. Differential Equations, Vol. 94, No. 2, 1991, pp. 228-253. Zbl0767.35040MR1137614
  26. [26] P. Vuillermot, Almost-Periodic Attractors for a Class of Non-Autonomous Reaction-Diffusion Equations on RN, II. Codimension-One Stable Manifolds, Differential and Integral Equations, Vol. 5, No. 3, 1992, pp. 693-720. Zbl0796.35076MR1157497
  27. [27] P. Vuillermot, Global Exponential Attractors for a Class of Almost-Periodic Parabolic Equations on RN, Proc. Am. Math. Soc., Vol. 116, No. 3, 1992, pp. 775-782. Zbl0802.35081MR1102861
  28. [28] P. Vuillermot, Almost-Periodic Attractors for a Class of Non-Autonomous Reaction-Diffusion Equations on RN, III. Center Curves and Liapounov Stability, Nonlinear Analysis TMA, Vol. 22. No. 5. 1994, pp. 533-559. Zbl0812.35012MR1266542

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.