Existence of minimizers for non-quasiconvex functionals arising in optimal design
Grégoire Allaire; Gilles Francfort
Annales de l'I.H.P. Analyse non linéaire (1998)
- Volume: 15, Issue: 3, page 301-339
- ISSN: 0294-1449
Access Full Article
topHow to cite
topAllaire, Grégoire, and Francfort, Gilles. "Existence of minimizers for non-quasiconvex functionals arising in optimal design." Annales de l'I.H.P. Analyse non linéaire 15.3 (1998): 301-339. <http://eudml.org/doc/78439>.
@article{Allaire1998,
author = {Allaire, Grégoire, Francfort, Gilles},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {integral functional; optimal design; weakly lower-semicontinuous; shape optimization problems in electrostatics; homogenization; quadratic Kohn-Strang type functionals},
language = {eng},
number = {3},
pages = {301-339},
publisher = {Gauthier-Villars},
title = {Existence of minimizers for non-quasiconvex functionals arising in optimal design},
url = {http://eudml.org/doc/78439},
volume = {15},
year = {1998},
}
TY - JOUR
AU - Allaire, Grégoire
AU - Francfort, Gilles
TI - Existence of minimizers for non-quasiconvex functionals arising in optimal design
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1998
PB - Gauthier-Villars
VL - 15
IS - 3
SP - 301
EP - 339
LA - eng
KW - integral functional; optimal design; weakly lower-semicontinuous; shape optimization problems in electrostatics; homogenization; quadratic Kohn-Strang type functionals
UR - http://eudml.org/doc/78439
ER -
References
top- [1] G. Allaire, E. Bonnetier, G.A. Francfort and F. Jouve, Shape optimization by the homogenization method, Num. Math., Vol. 76, 1997, pp. 27-68. Zbl0889.73051MR1438681
- [2] G. Allaire and R.K. Kohn, Optimal bounds on the effective behavior of a mixture of two well-ordered elastic materials, Quat. Appl. Math., Vol. 51, 1993, pp. 643-674. Zbl0805.73043MR1247433
- [3] M. Avellaneda, Optimal bounds and microgeometries for elastic two-phase composites, SIAM, J. Appl. Math., Vol. 47, 6, 1987, pp. 1216-1228. Zbl0632.73079MR916238
- [4] J.M. Ball and R.D. James, Fine phase mixtures as minimizers of energy, Arch. Rat.Mech. Anal., Vol. 100, 1, 1987, pp. 13-52. Zbl0629.49020MR906132
- [5] J.M. Ball and F. Murat, W1,p quasiconvexity and variational problems for multiple integrals, J. Func. Anal., Vol. 58, 1984, pp. 225-253. Zbl0549.46019MR759098
- [6] B. Dacorogna, Direct Methods in the Calculus of Variations, Springer Verlag, BerlinHeidelberg (1989). Zbl0703.49001MR990890
- [7] B. Dacorogna and P. Marcellini, Existence of minimizers for non quasiconvex integrals, Arch. Rational Mech. Anal., Vol. 131, 1995, pp. 359-399. Zbl0837.49002MR1354700
- [8] G. Dal Maso and R.V. Kohn, The local character of G-closure, to appear.
- [9] I. Fonseca and G. Francfort, Relaxation in BV versus quasiconvexification in W1,p; a model for the interaction between fracture and damage, Calculus of Variations, Vol. 3, 4, 1995, pp. 407-446. Zbl0847.73077MR1385294
- [10] I. Fonseca and S. Müller, A-quasiconvexity: a necessary and sufficient condition for Lp weak lower semicontinuity under p.d.e. constraints, to appear.
- [11] R.V. Kohn and G. Strang, Optimal design and relaxation of variational problem I, II, III, Comm. Pure and Appl. Math., Vol. 39, 1986, pp. 353-377. Zbl0694.49004MR829845
- [12] P. Marcellini, Periodic solutions and homogenization of nonlinear variational problems, Ann. Mat. Pura Appl., Vol. 1178, 1978, pp. 139-152. Zbl0395.49007MR515958
- [13] L. Mirsky, On the trace of a matrix product, Math. Nachr. Vol. 20, 1959, pp. 171-174. Zbl0136.24901MR125851
- [14] F. Murat, Contre-exemples pour divers problèmes où le contrôle intervient dans les coefficients, Ann. Mat. Pura Appl., Vol. 112, 1977, pp. 49-68. Zbl0349.49005MR438205
- [15] F. Murat and L. Tartar, H-convergence, to appear in Topics in the mathematical modeling of composite materials, R. V. Koh, ed., series: Progress in Nonlinear Differential Equations and their Applications, Birkhaüser, Boston (french version: mimeographed notes, séminaire d'Analyse Fonctionnelle et Numérique de l'Université d'Alger, 1978. Zbl0920.35019MR1493039
- [16] F. Murat and L. Tartar, Calcul des variations et Homogénéisation, Les Méthodes de l'Homogénéisation Théorie et Applications en Physique, Coll. Dir. Études et Recherches EDF, Eyrolles, 1985, pp. 319-369. MR844873
- [17] L. Tartar, Estimations fines de coefficients homogénéisés, Ennio de Giorgi Colloquium, P. Krée ed., Pitman Research Notes in Math., Vol. 125, 1985, pp. 168-187. Zbl0586.35004MR909716
Citations in EuDML Documents
top- Giovanni Alessandrini, Vincenzo Nesi, Univalent -harmonic mappings : applications to composites
- Giovanni Alessandrini, Vincenzo Nesi, Univalent -harmonic mappings: applications to composites
- Vincenzo Nesi, Enrico Rogora, A complete characterization of invariant jointly rank- convex quadratic forms and applications to composite materials
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.