Existence of minimizers for non-quasiconvex functionals arising in optimal design

Grégoire Allaire; Gilles Francfort

Annales de l'I.H.P. Analyse non linéaire (1998)

  • Volume: 15, Issue: 3, page 301-339
  • ISSN: 0294-1449

How to cite

top

Allaire, Grégoire, and Francfort, Gilles. "Existence of minimizers for non-quasiconvex functionals arising in optimal design." Annales de l'I.H.P. Analyse non linéaire 15.3 (1998): 301-339. <http://eudml.org/doc/78439>.

@article{Allaire1998,
author = {Allaire, Grégoire, Francfort, Gilles},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {integral functional; optimal design; weakly lower-semicontinuous; shape optimization problems in electrostatics; homogenization; quadratic Kohn-Strang type functionals},
language = {eng},
number = {3},
pages = {301-339},
publisher = {Gauthier-Villars},
title = {Existence of minimizers for non-quasiconvex functionals arising in optimal design},
url = {http://eudml.org/doc/78439},
volume = {15},
year = {1998},
}

TY - JOUR
AU - Allaire, Grégoire
AU - Francfort, Gilles
TI - Existence of minimizers for non-quasiconvex functionals arising in optimal design
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1998
PB - Gauthier-Villars
VL - 15
IS - 3
SP - 301
EP - 339
LA - eng
KW - integral functional; optimal design; weakly lower-semicontinuous; shape optimization problems in electrostatics; homogenization; quadratic Kohn-Strang type functionals
UR - http://eudml.org/doc/78439
ER -

References

top
  1. [1] G. Allaire, E. Bonnetier, G.A. Francfort and F. Jouve, Shape optimization by the homogenization method, Num. Math., Vol. 76, 1997, pp. 27-68. Zbl0889.73051MR1438681
  2. [2] G. Allaire and R.K. Kohn, Optimal bounds on the effective behavior of a mixture of two well-ordered elastic materials, Quat. Appl. Math., Vol. 51, 1993, pp. 643-674. Zbl0805.73043MR1247433
  3. [3] M. Avellaneda, Optimal bounds and microgeometries for elastic two-phase composites, SIAM, J. Appl. Math., Vol. 47, 6, 1987, pp. 1216-1228. Zbl0632.73079MR916238
  4. [4] J.M. Ball and R.D. James, Fine phase mixtures as minimizers of energy, Arch. Rat.Mech. Anal., Vol. 100, 1, 1987, pp. 13-52. Zbl0629.49020MR906132
  5. [5] J.M. Ball and F. Murat, W1,p quasiconvexity and variational problems for multiple integrals, J. Func. Anal., Vol. 58, 1984, pp. 225-253. Zbl0549.46019MR759098
  6. [6] B. Dacorogna, Direct Methods in the Calculus of Variations, Springer Verlag, BerlinHeidelberg (1989). Zbl0703.49001MR990890
  7. [7] B. Dacorogna and P. Marcellini, Existence of minimizers for non quasiconvex integrals, Arch. Rational Mech. Anal., Vol. 131, 1995, pp. 359-399. Zbl0837.49002MR1354700
  8. [8] G. Dal Maso and R.V. Kohn, The local character of G-closure, to appear. 
  9. [9] I. Fonseca and G. Francfort, Relaxation in BV versus quasiconvexification in W1,p; a model for the interaction between fracture and damage, Calculus of Variations, Vol. 3, 4, 1995, pp. 407-446. Zbl0847.73077MR1385294
  10. [10] I. Fonseca and S. Müller, A-quasiconvexity: a necessary and sufficient condition for Lp weak lower semicontinuity under p.d.e. constraints, to appear. 
  11. [11] R.V. Kohn and G. Strang, Optimal design and relaxation of variational problem I, II, III, Comm. Pure and Appl. Math., Vol. 39, 1986, pp. 353-377. Zbl0694.49004MR829845
  12. [12] P. Marcellini, Periodic solutions and homogenization of nonlinear variational problems, Ann. Mat. Pura Appl., Vol. 1178, 1978, pp. 139-152. Zbl0395.49007MR515958
  13. [13] L. Mirsky, On the trace of a matrix product, Math. Nachr. Vol. 20, 1959, pp. 171-174. Zbl0136.24901MR125851
  14. [14] F. Murat, Contre-exemples pour divers problèmes où le contrôle intervient dans les coefficients, Ann. Mat. Pura Appl., Vol. 112, 1977, pp. 49-68. Zbl0349.49005MR438205
  15. [15] F. Murat and L. Tartar, H-convergence, to appear in Topics in the mathematical modeling of composite materials, R. V. Koh, ed., series: Progress in Nonlinear Differential Equations and their Applications, Birkhaüser, Boston (french version: mimeographed notes, séminaire d'Analyse Fonctionnelle et Numérique de l'Université d'Alger, 1978. Zbl0920.35019MR1493039
  16. [16] F. Murat and L. Tartar, Calcul des variations et Homogénéisation, Les Méthodes de l'Homogénéisation Théorie et Applications en Physique, Coll. Dir. Études et Recherches EDF, Eyrolles, 1985, pp. 319-369. MR844873
  17. [17] L. Tartar, Estimations fines de coefficients homogénéisés, Ennio de Giorgi Colloquium, P. Krée ed., Pitman Research Notes in Math., Vol. 125, 1985, pp. 168-187. Zbl0586.35004MR909716

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.