Blow-up results for vector-valued nonlinear heat equations with no gradient structure

Hatem Zaag

Annales de l'I.H.P. Analyse non linéaire (1998)

  • Volume: 15, Issue: 5, page 581-622
  • ISSN: 0294-1449

How to cite

top

Zaag, Hatem. "Blow-up results for vector-valued nonlinear heat equations with no gradient structure." Annales de l'I.H.P. Analyse non linéaire 15.5 (1998): 581-622. <http://eudml.org/doc/78449>.

@article{Zaag1998,
author = {Zaag, Hatem},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {complex equation; asymptotic profile near singularity},
language = {eng},
number = {5},
pages = {581-622},
publisher = {Gauthier-Villars},
title = {Blow-up results for vector-valued nonlinear heat equations with no gradient structure},
url = {http://eudml.org/doc/78449},
volume = {15},
year = {1998},
}

TY - JOUR
AU - Zaag, Hatem
TI - Blow-up results for vector-valued nonlinear heat equations with no gradient structure
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1998
PB - Gauthier-Villars
VL - 15
IS - 5
SP - 581
EP - 622
LA - eng
KW - complex equation; asymptotic profile near singularity
UR - http://eudml.org/doc/78449
ER -

References

top
  1. [1] J. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford, Vol. 28, 1977, pp. 473-486. Zbl0377.35037MR473484
  2. [2] M. Berger and R. Kohn, A rescaling algorithm for the numerical calculation of blowing-up solutions, Comm. Pure Appl. Math., Vol. 41, 1988, pp. 841-863. Zbl0652.65070MR948774
  3. [3] J. Bricmont and A. Kupiainen, Renormalization group and nonlinear PDEs, Quantum and non-commutative analysis, past present and future perspectives, Kluwer (Boston), 1993. Zbl0842.35040MR1276284
  4. [4] J. Bricmont and A. Kupiainen, Universality in blow-up for nonlinear heat equations, Nonlinearity, 7, 1994, pp. 539-575. Zbl0857.35018MR1267701
  5. [5] S. Filippas and R. Kohn, Refined asymptotics for the blowup of ut - Δu = up, Comm. Pure Appl. Math., Vol. 45, 1992, pp. 821-869 Zbl0784.35010MR1164066
  6. [6] S. Filippas and F. Merle, Modulation theory for the blowup of vector-valued nonlinear heat equations, J. Diff. Equations, Vol. 116, 1995, pp. 119-148. Zbl0814.35043MR1317705
  7. [7] V.A. Galaktionov, S.P. Kurdyumov and A.A. Samarskii, On approximate self-similar solutions for some class of quasilinear heat equations with sources, Math. USSR-Sb, Vol. 52, 1985, pp. 155-180. Zbl0573.35049
  8. [8] V.A. Galaktionov and J.L. Vazquez, Regional blow-up in a semilinear heat equation with convergence to a Hamilton-Jacobi equation, SIAM J. Math. Anal., Vol. 24, 1993, pp. 1254-1276. Zbl0813.35033MR1234014
  9. [9] Y. Giga and R. Kohn, Asymptotically self-similar blowup of semilinear heat equations, Comm. Pure Appl. Math., Vol. 38, 1985, pp. 297-319. Zbl0585.35051MR784476
  10. [10] Y. Giga and R. Kohn, Characterizing blowup using similarity variables, Indiana Univ. Math. J., Vol. 36, 1987, pp. 1-40. Zbl0601.35052MR876989
  11. [11] Y. Giga and R. Kohn, Nondegeneracy of blow-up for semilinear heat equations, Comm. Pure Appl. Math., Vol. 42, 1989, pp. 845-884. Zbl0703.35020MR1003437
  12. [12] R.S. Hamilton, The formation of singularities in the Ricci flow, Surveys in differential geometry, Vol. II, Internat. Press, Cambridge, 1995, pp. 7-136. Zbl0867.53030MR1375255
  13. [13] M.A. Herrero and J.J.L. Velazquez, Blow-up behavior of one-dimensional semilinear parabolic equations, Ann. Inst. Henri Poincaré, Vol. 10, 1993, pp. 131-189. Zbl0813.35007MR1220032
  14. [14] M.A. Herrero and J.J.L. Velazquez, Flat blow-up in one-dimensional semilinear heat equations, Differential and Integral eqns., Vol. 5, 1992, pp. 973-997. Zbl0767.35036MR1171974
  15. [15] C.D. Levermore and M. Oliver, The complex Ginzburg-Landau equation as a model problem, Dynamical systems and probabilistic methods in partial differential equations (Berkeley, 1994), Lectures in Appl. Math., Vol. 31, Amer. Math. Soc., Providence, RI, 1996, pp. 141-190. Zbl0845.35003MR1363028
  16. [16] H. Levine, Some nonexistence and instability theorems for solutions of formally parabolic equations of the form Put = -Au + F(u), Arch. Rat. Mech. Anal., Vol. 51, 1973, pp. 371-386. Zbl0278.35052MR348216
  17. [17] F. Merle, Solution of a nonlinear heat equation with arbitrary given blow-up points, Comm. Pure Appl. Math., Vol. 45, 1992, pp. 263-300. Zbl0785.35012MR1151268
  18. [18] F. Merle and H. Zaag, Stability of blow-up profile for equation of the type ut = Δu + |u|p-1u, preprint. Zbl0872.35049
  19. [19] J.J.L. Velazquez, Classification of singularities for blowing up solutions in higher dimensions, Trans. Amer. Math. Soc., Vol. 338, 1993, pp. 441-464. Zbl0803.35015MR1134760
  20. [20] F. Weissler, Single-point blowup for a semilinear initial value problem, J. Diff. Equations, Vol. 55, 1984, pp. 204-224. Zbl0555.35061MR764124

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.