Blow-up results for vector-valued nonlinear heat equations with no gradient structure
Annales de l'I.H.P. Analyse non linéaire (1998)
- Volume: 15, Issue: 5, page 581-622
- ISSN: 0294-1449
Access Full Article
topHow to cite
topZaag, Hatem. "Blow-up results for vector-valued nonlinear heat equations with no gradient structure." Annales de l'I.H.P. Analyse non linéaire 15.5 (1998): 581-622. <http://eudml.org/doc/78449>.
@article{Zaag1998,
author = {Zaag, Hatem},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {complex equation; asymptotic profile near singularity},
language = {eng},
number = {5},
pages = {581-622},
publisher = {Gauthier-Villars},
title = {Blow-up results for vector-valued nonlinear heat equations with no gradient structure},
url = {http://eudml.org/doc/78449},
volume = {15},
year = {1998},
}
TY - JOUR
AU - Zaag, Hatem
TI - Blow-up results for vector-valued nonlinear heat equations with no gradient structure
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1998
PB - Gauthier-Villars
VL - 15
IS - 5
SP - 581
EP - 622
LA - eng
KW - complex equation; asymptotic profile near singularity
UR - http://eudml.org/doc/78449
ER -
References
top- [1] J. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford, Vol. 28, 1977, pp. 473-486. Zbl0377.35037MR473484
- [2] M. Berger and R. Kohn, A rescaling algorithm for the numerical calculation of blowing-up solutions, Comm. Pure Appl. Math., Vol. 41, 1988, pp. 841-863. Zbl0652.65070MR948774
- [3] J. Bricmont and A. Kupiainen, Renormalization group and nonlinear PDEs, Quantum and non-commutative analysis, past present and future perspectives, Kluwer (Boston), 1993. Zbl0842.35040MR1276284
- [4] J. Bricmont and A. Kupiainen, Universality in blow-up for nonlinear heat equations, Nonlinearity, 7, 1994, pp. 539-575. Zbl0857.35018MR1267701
- [5] S. Filippas and R. Kohn, Refined asymptotics for the blowup of ut - Δu = up, Comm. Pure Appl. Math., Vol. 45, 1992, pp. 821-869 Zbl0784.35010MR1164066
- [6] S. Filippas and F. Merle, Modulation theory for the blowup of vector-valued nonlinear heat equations, J. Diff. Equations, Vol. 116, 1995, pp. 119-148. Zbl0814.35043MR1317705
- [7] V.A. Galaktionov, S.P. Kurdyumov and A.A. Samarskii, On approximate self-similar solutions for some class of quasilinear heat equations with sources, Math. USSR-Sb, Vol. 52, 1985, pp. 155-180. Zbl0573.35049
- [8] V.A. Galaktionov and J.L. Vazquez, Regional blow-up in a semilinear heat equation with convergence to a Hamilton-Jacobi equation, SIAM J. Math. Anal., Vol. 24, 1993, pp. 1254-1276. Zbl0813.35033MR1234014
- [9] Y. Giga and R. Kohn, Asymptotically self-similar blowup of semilinear heat equations, Comm. Pure Appl. Math., Vol. 38, 1985, pp. 297-319. Zbl0585.35051MR784476
- [10] Y. Giga and R. Kohn, Characterizing blowup using similarity variables, Indiana Univ. Math. J., Vol. 36, 1987, pp. 1-40. Zbl0601.35052MR876989
- [11] Y. Giga and R. Kohn, Nondegeneracy of blow-up for semilinear heat equations, Comm. Pure Appl. Math., Vol. 42, 1989, pp. 845-884. Zbl0703.35020MR1003437
- [12] R.S. Hamilton, The formation of singularities in the Ricci flow, Surveys in differential geometry, Vol. II, Internat. Press, Cambridge, 1995, pp. 7-136. Zbl0867.53030MR1375255
- [13] M.A. Herrero and J.J.L. Velazquez, Blow-up behavior of one-dimensional semilinear parabolic equations, Ann. Inst. Henri Poincaré, Vol. 10, 1993, pp. 131-189. Zbl0813.35007MR1220032
- [14] M.A. Herrero and J.J.L. Velazquez, Flat blow-up in one-dimensional semilinear heat equations, Differential and Integral eqns., Vol. 5, 1992, pp. 973-997. Zbl0767.35036MR1171974
- [15] C.D. Levermore and M. Oliver, The complex Ginzburg-Landau equation as a model problem, Dynamical systems and probabilistic methods in partial differential equations (Berkeley, 1994), Lectures in Appl. Math., Vol. 31, Amer. Math. Soc., Providence, RI, 1996, pp. 141-190. Zbl0845.35003MR1363028
- [16] H. Levine, Some nonexistence and instability theorems for solutions of formally parabolic equations of the form Put = -Au + F(u), Arch. Rat. Mech. Anal., Vol. 51, 1973, pp. 371-386. Zbl0278.35052MR348216
- [17] F. Merle, Solution of a nonlinear heat equation with arbitrary given blow-up points, Comm. Pure Appl. Math., Vol. 45, 1992, pp. 263-300. Zbl0785.35012MR1151268
- [18] F. Merle and H. Zaag, Stability of blow-up profile for equation of the type ut = Δu + |u|p-1u, preprint. Zbl0872.35049
- [19] J.J.L. Velazquez, Classification of singularities for blowing up solutions in higher dimensions, Trans. Amer. Math. Soc., Vol. 338, 1993, pp. 441-464. Zbl0803.35015MR1134760
- [20] F. Weissler, Single-point blowup for a semilinear initial value problem, J. Diff. Equations, Vol. 55, 1984, pp. 204-224. Zbl0555.35061MR764124
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.