Complete blow up and global behaviour of solutions of u t - Δ u = g ( u )

Yvan Martel

Annales de l'I.H.P. Analyse non linéaire (1998)

  • Volume: 15, Issue: 6, page 687-723
  • ISSN: 0294-1449

How to cite

top

Martel, Yvan. "Complete blow up and global behaviour of solutions of $u_t - \Delta u = g (u)$." Annales de l'I.H.P. Analyse non linéaire 15.6 (1998): 687-723. <http://eudml.org/doc/78453>.

@article{Martel1998,
author = {Martel, Yvan},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {nonlinear heat equation; blow up in infinite time; convergence rate},
language = {eng},
number = {6},
pages = {687-723},
publisher = {Gauthier-Villars},
title = {Complete blow up and global behaviour of solutions of $u_t - \Delta u = g (u)$},
url = {http://eudml.org/doc/78453},
volume = {15},
year = {1998},
}

TY - JOUR
AU - Martel, Yvan
TI - Complete blow up and global behaviour of solutions of $u_t - \Delta u = g (u)$
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1998
PB - Gauthier-Villars
VL - 15
IS - 6
SP - 687
EP - 723
LA - eng
KW - nonlinear heat equation; blow up in infinite time; convergence rate
UR - http://eudml.org/doc/78453
ER -

References

top
  1. [1] P. Baras and L. Cohen, Complete blow after Tmax for the solution of a semilinear heat equation, J. Funct. Anal., Vol. 71, 1987, pp. 142-174. Zbl0653.35037MR879705
  2. [2] P. Baras and M. Pierre, Critère d'existence de solutions positives pour des equations semi-linéaires non monotones, Ann. Inst. Henri Poincaré, Vol. 2, 1985, pp. 185-212. Zbl0599.35073MR797270
  3. [3] H. Brezis, T. Cazenave, Y. Martel and A. Ramiandrisoa, Blow up for ut - Δu = g(u) revisited, Adv. Diff. Eq., Vol. 1, 1996, pp. 73-90. Zbl0855.35063MR1357955
  4. [4] H. Fujita, On the nonlinear equations Δu + eu = 0 and ∂u/ ∂t = Δu + eu, Bull. Amer. Math. Soc., Vol. 75, 1969, pp. 132-135. Zbl0216.12101MR239258
  5. [5] V.A. Galaktionov and J.L. Vazquez, Continuation of blow up solutions of nonlinear heat equations in several space dimensions, to appear. Zbl0874.35057
  6. [6] A.A. Lacey and D.E. Tzanetis, Global, unbounded solutions to a parabolic equation, J. Diff. Eq., Vol. 101, 1993, pp. 80-102. Zbl0799.35123MR1199484
  7. [7] Y. Martel, Uniqueness of weak extremal solutions of nonlinear elliptic problems, to appear in Houston Journal of Math., 1997. Zbl0884.35037MR1688823
  8. [8] P. Mironescu and V.D. Radulescu, The study of a bifurcation problem associated to an asymptotically linear function, Nonlinear Analysis TMA, Vol. 26, 1996, pp. 857-875. Zbl0842.35008MR1362758
  9. [9] W.-M. Ni, P.E. Sacks and J. Tavantzis, On the asymptotic behavior of solutions of certain quasilinear parabolic equations, J. Diff. Eq., Vol. 54, 1984, pp. 97-120. Zbl0565.35053MR756548

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.