Young measure approach to characterization of behaviour of integral functionals on weakly convergent sequences by means of their integrands

M. Sychev

Annales de l'I.H.P. Analyse non linéaire (1998)

  • Volume: 15, Issue: 6, page 755-782
  • ISSN: 0294-1449

How to cite

top

Sychev, M.. "Young measure approach to characterization of behaviour of integral functionals on weakly convergent sequences by means of their integrands." Annales de l'I.H.P. Analyse non linéaire 15.6 (1998): 755-782. <http://eudml.org/doc/78455>.

@article{Sychev1998,
author = {Sychev, M.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {gradient Young measures; stability; integral functional; sequential weak lower semicontinuity; quasiconvexity},
language = {eng},
number = {6},
pages = {755-782},
publisher = {Gauthier-Villars},
title = {Young measure approach to characterization of behaviour of integral functionals on weakly convergent sequences by means of their integrands},
url = {http://eudml.org/doc/78455},
volume = {15},
year = {1998},
}

TY - JOUR
AU - Sychev, M.
TI - Young measure approach to characterization of behaviour of integral functionals on weakly convergent sequences by means of their integrands
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1998
PB - Gauthier-Villars
VL - 15
IS - 6
SP - 755
EP - 782
LA - eng
KW - gradient Young measures; stability; integral functional; sequential weak lower semicontinuity; quasiconvexity
UR - http://eudml.org/doc/78455
ER -

References

top
  1. [1] E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations, Arch. Rat. Mech. Anal., Vol. 86, 1984, pp. 125-145. Zbl0565.49010MR751305
  2. [2] G. Alberti, A Lusin type theorem for gradients, J. Funct. Anal., Vol. 100, 1991, pp. 110-118. Zbl0752.46025MR1124295
  3. [3] E.J. Balder, A general approach to lower semicontinuity and lower closure in optimal control theory, SIAM J. Control and Optimization, Vol. 22, 1984, pp. 570-598. Zbl0549.49005MR747970
  4. [4] J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rat. Mech. Anal., Vol. 6, 1978, pp. 337-403. Zbl0368.73040MR475169
  5. [5] J.M. Ball, A version of the fundamental theorem for Young measures,in PDE's and Continuum Models of Phase Transitions, M. Rascle, D. Serre, M. Slemrod, eds., Lecture Notes in Physics344, Springer-Verlag, 1989, pp. 207-215. Zbl0991.49500MR1036070
  6. [6] J.M. Ball and F. Murat, W1.p-quasiconvexity and variational problems for multiple integrals, J. Funct. Anal., Vol. 58, 1984, pp. 225-253. Zbl0549.46019MR759098
  7. [7] J.M. Ball and K. Zhang, Lower semicontinuity of multiple integrals and the biting lemma, Proc. Roy. Soc. Edinburgh, Sect A., Vol. 114, 1990, pp. 367-379. Zbl0716.49011MR1055554
  8. [8] A. Cellina, On minima of functionals of gradient: necessary conditions, Nonlinear Analysis TMA, Vol. 20, 1993, pp. 337-341. Zbl0784.49021MR1206422
  9. [9] A. Cellina, On minima of functionals of gradient: sufficient conditions, Nonlinear Analysis TMA, Vol. 20, 1993, pp. 343-347. Zbl0784.49022MR1206423
  10. [10] A. Cellina and S. Zagatti, A version of Olech's lemma in a problem of the Calculus of Variations, SIAM J. Control and Optimization, Vol. 32, 1994, pp. 1114-1127. Zbl0874.49013MR1280232
  11. [11] B. Dacorogna, Weak continuity and weak lower semicontinuity of nonlinear problems, Lecture Notes in Math., Vol. 922, Springer-Verlag, 1982. Zbl0484.46041MR658130
  12. [12] B. Dacorogna, Direct methods in the Calculus of Variations, Springer-Verlag, 1989. Zbl0703.49001MR990890
  13. [13] I. Ekeland and R. Temam, Convex analysis and variational problems, Amsterdam, North-Holland, 1976. Zbl0322.90046MR463994
  14. [14] L.C. Evans and R.F. Gariepy, Some remarks on quasiconvexity and strong convergence, Proc. Roy. Soc. Edinburg, Sect. A, Vol. 106, 1987, pp. 53-61. Zbl0628.49011MR899940
  15. [15] G. Friesecke, A necessary and sufficient condition for nonattainment and formation of microstructure almost everywhere in scalar variational problems, Proc. Roy. Soc. Edinburgh. Sect. A, Vol. 124, 1994, pp. 437-471. Zbl0809.49017MR1286914
  16. [16] T. Iwaniec and C. Sbordone, On the integrability of the jacobian under minimal hypotheses, Arch. Rat. Mech. Anal., Vol. 119, 1992, pp. 129-143. Zbl0766.46016MR1176362
  17. [17] O. Kalamajska, Oral communication. 
  18. [18] D. Kinderlehrer and P. Pedregal, Characterization of Young measures generated by gradients, Arch. Rat. Mech. Anal., Vol. 115, 1991, pp. 329-365. Zbl0754.49020MR1120852
  19. [19] D. Kinderlehrer and P. Pedregal, Weak convergence of integrands and the Young measure representation, SIAM J. Math. Anal., Vol. 23, 1992, pp. 1-19. Zbl0757.49014MR1145159
  20. [20] D. Kinderlehrer and P. Pedregal, Gradient Young measures generated by sequences in Sobolev spaces, J. Geom. Anal., Vol. 4, No. 1, 1994, pp. 59-90. Zbl0808.46046MR1274138
  21. [21] J. Kristensen, Finite functionals and Young measures generated by gradients of Sobolev functions, MAT-REPORT No. 1994-34, August 1994. 
  22. [22] M. Krasnoselskij and Y. Rutickij, Convex functions and Orlicz spaces, Groningen, Noordhoff, 1961. Zbl0095.09103
  23. [23] K. Kuratowski K. and Ryll-Nardzewski, A general theorem of selectors, Bull. Acad. Polon. Sci., Vol. XIII, No. 6, 1966, pp. 397-403. Zbl0152.21403MR188994
  24. [24] R.J. Knops and C.A. Stuart, Quasiconvexity and Uniqueness of Equilibrium Solutions in Nonlinear Elasticity, Arch. Rat. Mech. Anal., Vol. 86, No. 3. 1984, pp. 233-249. Zbl0589.73017MR751508
  25. [25] P. Marcellini, Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals, Manuscripta Math., Vol. 51, 1985, pp. 1-28. Zbl0573.49010MR788671
  26. [26] J. Maly, Weak lower semicontinuity of polyconvex integrals, Proc. Roy. Soc. Edinburgh., Sect A, Vol. 123, No. 4, 1993, pp. 681-691. Zbl0813.49017MR1237608
  27. [27] C.B. Morrey, Multiple integrals in the Calculus of Variations, Springer-Verlag, 1966. Zbl0142.38701MR202511
  28. [28] P. Pedregal, Jensen's inequality in the calculus of variations, Differential and Integral Equations, Vol. 7, 1994, pp. 57-72. Zbl0810.49013MR1250939
  29. [29] W. Rudin, Functional Analysis, Tata Mc Graw-Hill, 1985. Zbl0253.46001MR365062
  30. [30] M. Sychev, Necessary and sufficient conditions in theorems of lower semicontinuity and convergence with a functional, Russ. Acad. Sci. Sb. Math., Vol. 186, 1995, pp. 847-878. Zbl0835.49009MR1349015
  31. [3 1 ] M. Sychev, Characterization of weak-strong convergence property of integral functionals by means of their integrands, Preprint 11, 1994, Inst. Math. Siberian Division of Russ. Acad. Sci., Novosibirsk. 
  32. [32] M. Sychev, A criterion for continuity of an integral functional on a sequence of functions, Siberian Math. J., Vol. 36, No. 1, 1995, pp. 146-156. Zbl0856.49009MR1335221
  33. [33] A. Visintin, Strong convergence results related to strict convexity, Comm. Partial Differential Equations, Vol. 9, 1984, pp. 439-466. Zbl0545.49019MR741216
  34. [34] L.C. Young, Lectures on the Calculus of Variations and Optimal Control Theory, Saunders, 1969 (reprinted by Chelsea, 1980). Zbl0177.37801MR259704
  35. [35] L.C. Young, Generalized curves and the existence of an attained absolute minimum in the Calculus of Variations. Comptes Rendus de la Société des Sciences et des Lettres de Varsovie, classe III, Vol. 30, 1937, pp. 212-234. Zbl0019.21901JFM63.1064.01
  36. [36] W.P. Ziemer, Weakly differentiable functions, Springer-Verlag, New-York, 1989. Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.