Characterization of homogeneous gradient young measures in case of arbitrary integrands

Mikhail A. Sychev

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2000)

  • Volume: 29, Issue: 3, page 531-548
  • ISSN: 0391-173X

How to cite

top

Sychev, Mikhail A.. "Characterization of homogeneous gradient young measures in case of arbitrary integrands." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 29.3 (2000): 531-548. <http://eudml.org/doc/84417>.

@article{Sychev2000,
author = {Sychev, Mikhail A.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Young measures; calculus of variations; integral functionals; relaxation},
language = {eng},
number = {3},
pages = {531-548},
publisher = {Scuola normale superiore},
title = {Characterization of homogeneous gradient young measures in case of arbitrary integrands},
url = {http://eudml.org/doc/84417},
volume = {29},
year = {2000},
}

TY - JOUR
AU - Sychev, Mikhail A.
TI - Characterization of homogeneous gradient young measures in case of arbitrary integrands
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2000
PB - Scuola normale superiore
VL - 29
IS - 3
SP - 531
EP - 548
LA - eng
KW - Young measures; calculus of variations; integral functionals; relaxation
UR - http://eudml.org/doc/84417
ER -

References

top
  1. [AF] E. Acerbi - N. Fusco, Semicontinuity problems in the calculus of variations, Arch. Rational Mech. Anal. 86 (1984), 125-145. Zbl0565.49010MR751305
  2. [Ba] E.J. Balder, A general approach to lower semicontinuity and lower closure in optimal control theory, SIAM J. Control Optim. 22 (1984), 570-598. Zbl0549.49005MR747970
  3. [B1] J.M. Ball, A version of the fundamental theorem for Young measures, In: "PDE's and Continuum Models of Phase Transitions", M. Rascle - D. Serre - M. Slemrod (eds.), Lecture Notes in Physics, Vol. 344, Springer-Verlag, 1989, pp. 207-215. Zbl0991.49500MR1036070
  4. [B2] J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 (1978), 337-403. Zbl0368.73040MR475169
  5. [B3] J.M. Ball, Review of "Nonlinear problems of elasticity" by Stuart Antman.Bull., AMS3 (1996), 269-276. 
  6. [BL] H. Berliocchi - J.M. Lasry, Intégrandes normales et mesures paramétrées en calcul des variations, Bull. Soc. Math. France101 (1973), 129-184. Zbl0282.49041MR344980
  7. [BM] J.M. Ball - F. Murat, W1,p-quasiconvexity and variational problems for multiple integrals, J. Funct. Anal.58 (1984), 225-253. Zbl0549.46019MR759098
  8. [Bu] G. Buttazzo, "Lower Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations", Pitman Res. Notes Math. Ser. 207, 1989. Zbl0669.49005MR1020296
  9. [C] P. Ciarlet, "Mathematical Elasticity", Vol.I: "Three-Dimensional Elasticity", North-Holland, 1988. Zbl0648.73014MR936420
  10. [D] B. Dacorogna, "Direct Methods in the Calculus of Variations ", Springer-Verlag, 1989. Zbl0703.49001MR990890
  11. [ET] I. Ekeland - R. Temam R., "Convex analysis and variational problems ", North-Holland, 1976. Zbl0322.90046MR463994
  12. [FM] I. Fonseca - J. Maly, Relaxation of Multiple Integrals in Sobolev Spaces Below the Growth Exponent for the Energy Density, Ann. Inst. H. Poincaré Anal. Non Linéaire14 (1997), 309-338. Zbl0868.49011MR1450951
  13. [JS] R.D. James - S.J. Spector, Remarks on W1,p-quasiconvexity, interpenetration of matter and function spaces for elasticity, Ann. Inst. H. Poincaré Anal. Non Linéaire9 (1992), 263-280. Zbl0773.73022MR1168303
  14. [KP1] D. Kinderlehrer - P. Pedregal, Characterization of Young measures generated by gradients, Arch. Rational Mech. Anal.115 (1991), 329-365. Zbl0754.49020MR1120852
  15. [KP2] D. Kinderlehrer - P. Pedregal, Weak convergence of integrands and the Young measure representation, SIAM J. Math. Anal.23 (1992), 1-19. Zbl0757.49014MR1145159
  16. [KP3] D. Kinderlehrer - P. Pedregal, Gradient Young measures generated by sequences in Sobolev spaces, J. Geom. Anal.4 (1994), 59-90. Zbl0808.46046MR1274138
  17. [Kr] J. Kristensen, Finite functionals and Young measures generated by gradients of Sobolev functions, Ph.D. Thesis, Technical University of Denmark, Kyngby, August 1994. 
  18. [M] J. Maly, Weak lower semicontinuity of polyconvex integrals, Proc. Roy. Soc. Edinburgh Sect. A123 (1993), 681-691. Zbl0813.49017MR1237608
  19. [MQY] S. Müller - T. Qi - B.S. Yan, On a new class of elastic deformations not allowing for cavitation, Ann. Inst. H. Poincaré Anal. Non Linéaire11 (1994), 217-243. Zbl0863.49002MR1267368
  20. [Sa] S. Saks, "Theory of the integral", Hafner, New York, 1937. Zbl0017.30004
  21. [S1] M. Sychev, Young measure approach to characterization of behavior of integral functionals on weakly convergent sequences by means of their integrands, Ann. Inst. H. Poincaré Anal. Non Linéaire15 (1998), 755-782. Zbl0923.49009MR1650962
  22. [S2] M. Sychev, A new approach to Young measure theory, relaxation and convergence in energy, Ann. Inst. H. Poincaré Anal. Non Linéaire16 (1999), 773-812. Zbl0943.49012MR1720517
  23. [S3] M. Sychev, Young measures as measurable functions, (in preparation). 
  24. [S4] M. Sychev, Existence and relaxation results in special classes of deformations, Preprint No 17, Max-Planck-Institute for Mathematics in Sciences, Leipzig, February 2000. MR1870168
  25. [Sv1] V Šverák, New examples of quasiconvex functions, Arch. Rational Mech. Anal.119 (1992), 293-300. Zbl0823.26009MR1179688
  26. [Sv2] V Šverák, On Tartar's conjecture, Ann. Inst. H. Poincaré Anal. Non Linéaire10 (1993), 405-412. Zbl0820.35022MR1246459
  27. [Sv3] V Šverák, Regularity properties of deformations with finite energy, Arch. Rational Mech. Anal.100 (1988), 105-127. Zbl0659.73038MR913960
  28. [T1] L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, Pitman Res. Notes Math. Ser. 39, 1979, pp. 136-212. Zbl0437.35004MR584398
  29. [T2] L. Tartar, The compensated compactness method applied to systems of conservations laws, in Systems of Nonlinear Partial Differential Equations, J. M. Ball (ed.), NATO ASI Series, Vol. CIII, Reidel, 1982. Zbl0536.35003MR725524
  30. [Y] L.C. Young, "Lectures on the Calculus of Variations and Optimal Control Theory", Saunders, 1969 (reprinted by Chelsea1980). Zbl0177.37801MR259704

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.