Elastic knots in euclidean 3-space
Annales de l'I.H.P. Analyse non linéaire (1999)
- Volume: 16, Issue: 2, page 137-166
- ISSN: 0294-1449
Access Full Article
topHow to cite
topvon der Mosel, Heiko. "Elastic knots in euclidean 3-space." Annales de l'I.H.P. Analyse non linéaire 16.2 (1999): 137-166. <http://eudml.org/doc/78461>.
@article{vonderMosel1999,
author = {von der Mosel, Heiko},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {curvature functionals; existence in isotopy classes; closed knotted curves},
language = {eng},
number = {2},
pages = {137-166},
publisher = {Gauthier-Villars},
title = {Elastic knots in euclidean 3-space},
url = {http://eudml.org/doc/78461},
volume = {16},
year = {1999},
}
TY - JOUR
AU - von der Mosel, Heiko
TI - Elastic knots in euclidean 3-space
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1999
PB - Gauthier-Villars
VL - 16
IS - 2
SP - 137
EP - 166
LA - eng
KW - curvature functionals; existence in isotopy classes; closed knotted curves
UR - http://eudml.org/doc/78461
ER -
References
top- [1] R. Bryant and P. Griffiths, Reduction of Order for the Constrained Variational Problem and ∫ k2/2 ds, Amer. J. Math., 108, 1986, pp. 525-570 . Zbl0604.58022MR844630
- [2] U. Dierkes, S. Hildebrandt, A. Küster and O. Wohlrab, Minimal Surfaces I (Boundary Value Problems), II (Boundary Regularity), Grundlehren der math. Wissenschaften, vols. 295-296, Springer, BerlinHeidelbergNew York, 1992. Zbl0777.53012MR1215267
- [3] L. Euler, Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattisimo sensu accepti, Bousquet, Lausannae et Genevae, 1744, E 65A. O.O. Ser. I, vol. 24. Zbl0788.01072
- [4] M.H. Freedman, ZHENG-XU He and Zhenghan Wang, On the Möbius Energy of Knots and Unknots, Annals of Math., 139 no. 1, 1994, pp. 1-50. Zbl0817.57011MR1259363
- [5] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Math. Studies105, Princeton Univ. Press, 1983. Zbl0516.49003MR717034
- [6] S. Hildebrandt and H.C. Wente, Variational Problems with Obstacles and a Volume Constraint, Math. Z.135, 1973, pp. 55-68. Zbl0284.49017MR365314
- [7] R. Irrgang, Ein singuläres bewegungsinvariantes Variationsproblem, Math. Z., 37, 1933, pp. 381-401. Zbl0007.21301MR1545401
- [8] R. Kusner and J. Sullivan, Möbius Energies for Knots and Links, Surfaces and Submanifolds, Geometric Topology, Proc. Georgia International Topology Conference, 1993, (ed. W.H. Kazez), AMS/IP Studies in Advanced Math., vol. 2, 1996, pp. 570-604. Zbl0888.57012MR1470748
- [9] J. Langer and D.A. Singer, Knotted Elastic Curves in R3, J. London Math. Soc., (2), 30, 1984, pp. 512-520. Zbl0595.53001MR810960
- [10] J. Langer and D.A. Singer, Curves in the Hyperbolic Plane and Mean Curvature of Tori in 3-Space, Bull. London Math. Soc., 16, 1984, pp. 531-534. Zbl0554.53014MR751827
- [11] J. Langer and D.A. Singer, The Total Squared Curvature of Closed Curves, J. Differential Geometry , 20, 1984, pp. 1-22. Zbl0554.53013MR772124
- [12] J. Langer and D.A. Singer, Curve Straightening and a Minimax Argument for Closed Elastic Curves, Topology, 24, no. 1, 1985, pp. 75-88. Zbl0561.53004MR790677
- [13] J. O'Hara, Energy of a Knot, Topology, 30, 1991, pp. 241-247. Zbl0733.57005MR1098918
- [14] A. Polden, Closed Curves of Least Total Curvature, Preprint, SFB 382 Univ. Tübingen, Report Nr.13 (1995).
- [15] J. Radon, Über das Minimum des Integrals ∫s2 s1 F(x, γ, υ, κ)ds, Sitzungsber. Kaiserliche Akad. Wiss., Wien. Math.-nat. Kl., 69, 1910, pp. 1257-1326. JFM41.0438.01
- [16] L. Schwartz, Théorie des distributions, Hermann, Paris, 1966. Zbl0149.09501MR209834
- [17] E.W. Stredulinsky, Higher Integrability from Reverse Hölder Inequalities, Indiana Univ. Math. J., 29, no. 3, 1980, pp. 407-413. Zbl0442.35064MR570689
- [18] H. Von Der Mosel, Geometrische Variationsprobleme höherer Ordnung, Bonner Math. Schriften, 293, 1996. Zbl0888.49031MR1614881
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.