Geometric restrictions for the existence of viscosity solutions

P. Cardaliaguet; B. Dacorogna; W. Gangbo; N. Georgy

Annales de l'I.H.P. Analyse non linéaire (1999)

  • Volume: 16, Issue: 2, page 189-220
  • ISSN: 0294-1449

How to cite


Cardaliaguet, P., et al. "Geometric restrictions for the existence of viscosity solutions." Annales de l'I.H.P. Analyse non linéaire 16.2 (1999): 189-220. <>.

author = {Cardaliaguet, P., Dacorogna, B., Gangbo, W., Georgy, N.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Hamilton-Jacobi equation},
language = {eng},
number = {2},
pages = {189-220},
publisher = {Gauthier-Villars},
title = {Geometric restrictions for the existence of viscosity solutions},
url = {},
volume = {16},
year = {1999},

AU - Cardaliaguet, P.
AU - Dacorogna, B.
AU - Gangbo, W.
AU - Georgy, N.
TI - Geometric restrictions for the existence of viscosity solutions
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1999
PB - Gauthier-Villars
VL - 16
IS - 2
SP - 189
EP - 220
LA - eng
KW - Hamilton-Jacobi equation
UR -
ER -


  1. [1] J.-P. Aubin and H. Frankowska, Set-valued analysis, Birkhäuser, 1991. 
  2. [2] J.-P. Aubin, Viability Theory, Birkhäuser, 1992. Zbl0755.93003MR1134779
  3. [3] M. Bardi and I. Capuzzo Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Birkhäuser, 1996. Zbl0890.49011MR1484411
  4. [4] G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi, Springer-Verlag, Berlin, 1994. Zbl0819.35002MR1613876
  5. [5] S.H. Benton, The Hamilton Jacobi equation. A global approach, Academic Press, New York, 1977. Zbl0418.49001MR442431
  6. [6] A. Bressan and F. Flores, On total differential inclusions, Rend. Sem. Mat. Univ. Padova, Vol. 92, 1994, pp. 9-16. Zbl0821.35158MR1320474
  7. [7] F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley Interscience, New York, 1983. Zbl0582.49001MR709590
  8. [8] M.G. Crandall and P.L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., Vol. 277, 1983, pp. 1-4. Zbl0599.35024MR690039
  9. [9] B. Dacorogna and P. Marcellini, Théorèmes d'existence dans le cas scalaire et vectoriel pour les équations de Hamilton-Jacobi, C.R. Acad. Sci. Paris, t. 322, Série I, 1996, pp. 237-240. Zbl0846.35028MR1378259
  10. [10] B. Dacorogna and P. Marcellini, Sur le Problème de Cauchy-Dirichlet pour les systèmes d'équations non linéaires du premier ordre, C.R. Acad. Sci. Paris, t. 323, Série I, 1996, pp. 599-602. Zbl0860.35020MR1411049
  11. [11] B. Dacorogna and P. Marcellini, General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial cases, Acta Mathematica, Vol. 178, 1997, pp. 1-37. Zbl0901.49027MR1448710
  12. [12] A. Douglis, The continuous dependence of generalized solutions of non linear partial differential equations upon initial data, Comm. Pure Appl. Math., Vol. 14, 1961, pp. 267-284. Zbl0117.31102MR139848
  13. [13] W.H. Fleming and H.M. Soner, Controlled Markov processes and viscosity solution, Springer-Verlag, New York, 1993. Zbl0773.60070MR1199811
  14. [14] H. Frankowska, Hamilton-Jacobi equations: viscosity solutions and generalized gradients, J. Math. Anal., Vol. 141, 1989, pp. 21-26. Zbl0727.35028MR1004581
  15. [15] H. Frankowska, Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations, SIAM J. Control and Opti., Vol. 31, 1993, pp. 257-272. Zbl0796.49024MR1200233
  16. [16] S.N. Kruzkov, Generalized solutions of Hamilton-Jacobi equation of eikonal type, USSR Sbornik, Vol. 27, 1975, pp. 406-446. Zbl0369.35012
  17. [17] P.L. Lions, Generalized solution of Hamilton-Jacobi equations, Pitman, London, 1982. Zbl0497.35001MR667669
  18. [18] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970. Zbl0193.18401MR274683

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.