Geometric restrictions for the existence of viscosity solutions
P. Cardaliaguet; B. Dacorogna; W. Gangbo; N. Georgy
Annales de l'I.H.P. Analyse non linéaire (1999)
- Volume: 16, Issue: 2, page 189-220
- ISSN: 0294-1449
Access Full Article
topHow to cite
topCardaliaguet, P., et al. "Geometric restrictions for the existence of viscosity solutions." Annales de l'I.H.P. Analyse non linéaire 16.2 (1999): 189-220. <http://eudml.org/doc/78463>.
@article{Cardaliaguet1999,
author = {Cardaliaguet, P., Dacorogna, B., Gangbo, W., Georgy, N.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Hamilton-Jacobi equation},
language = {eng},
number = {2},
pages = {189-220},
publisher = {Gauthier-Villars},
title = {Geometric restrictions for the existence of viscosity solutions},
url = {http://eudml.org/doc/78463},
volume = {16},
year = {1999},
}
TY - JOUR
AU - Cardaliaguet, P.
AU - Dacorogna, B.
AU - Gangbo, W.
AU - Georgy, N.
TI - Geometric restrictions for the existence of viscosity solutions
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1999
PB - Gauthier-Villars
VL - 16
IS - 2
SP - 189
EP - 220
LA - eng
KW - Hamilton-Jacobi equation
UR - http://eudml.org/doc/78463
ER -
References
top- [1] J.-P. Aubin and H. Frankowska, Set-valued analysis, Birkhäuser, 1991.
- [2] J.-P. Aubin, Viability Theory, Birkhäuser, 1992. Zbl0755.93003MR1134779
- [3] M. Bardi and I. Capuzzo Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Birkhäuser, 1996. Zbl0890.49011MR1484411
- [4] G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi, Springer-Verlag, Berlin, 1994. Zbl0819.35002MR1613876
- [5] S.H. Benton, The Hamilton Jacobi equation. A global approach, Academic Press, New York, 1977. Zbl0418.49001MR442431
- [6] A. Bressan and F. Flores, On total differential inclusions, Rend. Sem. Mat. Univ. Padova, Vol. 92, 1994, pp. 9-16. Zbl0821.35158MR1320474
- [7] F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley Interscience, New York, 1983. Zbl0582.49001MR709590
- [8] M.G. Crandall and P.L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., Vol. 277, 1983, pp. 1-4. Zbl0599.35024MR690039
- [9] B. Dacorogna and P. Marcellini, Théorèmes d'existence dans le cas scalaire et vectoriel pour les équations de Hamilton-Jacobi, C.R. Acad. Sci. Paris, t. 322, Série I, 1996, pp. 237-240. Zbl0846.35028MR1378259
- [10] B. Dacorogna and P. Marcellini, Sur le Problème de Cauchy-Dirichlet pour les systèmes d'équations non linéaires du premier ordre, C.R. Acad. Sci. Paris, t. 323, Série I, 1996, pp. 599-602. Zbl0860.35020MR1411049
- [11] B. Dacorogna and P. Marcellini, General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial cases, Acta Mathematica, Vol. 178, 1997, pp. 1-37. Zbl0901.49027MR1448710
- [12] A. Douglis, The continuous dependence of generalized solutions of non linear partial differential equations upon initial data, Comm. Pure Appl. Math., Vol. 14, 1961, pp. 267-284. Zbl0117.31102MR139848
- [13] W.H. Fleming and H.M. Soner, Controlled Markov processes and viscosity solution, Springer-Verlag, New York, 1993. Zbl0773.60070MR1199811
- [14] H. Frankowska, Hamilton-Jacobi equations: viscosity solutions and generalized gradients, J. Math. Anal., Vol. 141, 1989, pp. 21-26. Zbl0727.35028MR1004581
- [15] H. Frankowska, Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations, SIAM J. Control and Opti., Vol. 31, 1993, pp. 257-272. Zbl0796.49024MR1200233
- [16] S.N. Kruzkov, Generalized solutions of Hamilton-Jacobi equation of eikonal type, USSR Sbornik, Vol. 27, 1975, pp. 406-446. Zbl0369.35012
- [17] P.L. Lions, Generalized solution of Hamilton-Jacobi equations, Pitman, London, 1982. Zbl0497.35001MR667669
- [18] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970. Zbl0193.18401MR274683
Citations in EuDML Documents
top- Giovanni Pisante, Equazioni differenziali implicite: differenti metodi di approccio
- Graziano Crasta, Annalisa Malusa, Geometric constraints on the domain for a class of minimum problems
- Graziano Crasta, Annalisa Malusa, Geometric constraints on the domain for a class of minimum problems
- Bernard Dacorogna, A new approach to the existence of almost everywhere solutions of nonlinear PDEs
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.