Propagation of space moments in the Vlasov-Poisson equation and further results

F. Castella

Annales de l'I.H.P. Analyse non linéaire (1999)

  • Volume: 16, Issue: 4, page 503-533
  • ISSN: 0294-1449

How to cite

top

Castella, F.. "Propagation of space moments in the Vlasov-Poisson equation and further results." Annales de l'I.H.P. Analyse non linéaire 16.4 (1999): 503-533. <http://eudml.org/doc/78473>.

@article{Castella1999,
author = {Castella, F.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {infinite kinetic energy},
language = {eng},
number = {4},
pages = {503-533},
publisher = {Gauthier-Villars},
title = {Propagation of space moments in the Vlasov-Poisson equation and further results},
url = {http://eudml.org/doc/78473},
volume = {16},
year = {1999},
}

TY - JOUR
AU - Castella, F.
TI - Propagation of space moments in the Vlasov-Poisson equation and further results
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1999
PB - Gauthier-Villars
VL - 16
IS - 4
SP - 503
EP - 533
LA - eng
KW - infinite kinetic energy
UR - http://eudml.org/doc/78473
ER -

References

top
  1. [1] A.A. Arsenev, Global existence of a weak solution of Vlasov's system of equations, U.S.S.R. Comput. Math. Phys., Vol. 15, 1975, pp. 131-143. MR371322
  2. [2] A.A. Arsenev, Some estimates for the solution of the Vlasov equation, (Russian)Zh. Vychiol. Mat. i Mat. Fiz., Vol. 25, No. 1, 1985, pp. 80-87. MR779275
  3. [3] J.E. Barab, Nonexistence of asymptotically free solutions for a nonlinear Schrödinger equation, J. Math. Phys., Vol. 25, No. 11, 1984, pp. 3270-3273. Zbl0554.35123MR761850
  4. [4] F. Castella, L2 Solutions to the Schrödinger-Poisson System : Existence, Uniqueness, Time Behaviour, and Smoothing Effects, to appear in Math. Meth. Mod. Appl. Sci., 1997. Zbl0892.35141MR1487521
  5. [5] F. Castella and B. Perthame, Estimations de Strichartz pour les Equations de Transport Cinétique, C. R. Acad. Sci. Paris, Vol. 322, 1996, pp. 535-540. Zbl0848.35095MR1383431
  6. [6] T. Cazenave, An introduction to nonlinear Schrödinger Equations, Second Edition, Textos de Métodos Matemàticas26, Universidade Federal do Rio de Janeiro, 1993. 
  7. [7] R.J. Di Perna and P.L. Lions, Solutions globales d'équations du type Vlasov-Poisson, C. R. Acad. Sci. Paris, Vol. 307, 1988, pp. 655-658. Zbl0682.35022MR967806
  8. [8] R.J. Di Perna and P.L. Lions, Global weak solutions of Vlasov-Maxwell Systems, Comm. Pure Appl. Math., Vol. 42, 1989, pp. 729-757. Zbl0698.35128MR1003433
  9. [9] F. Golse, B. Perthame and R. Sentis, Un résultat de compacité pour les équations de transport, C. R. Acad. Sci. Paris, Série I, Vol. 301, 1985, pp. 341-344. Zbl0591.45007MR808622
  10. [10] F. Golse, P.L. Lions, B. Perthame and R. Sentis, Regularity of the moments of the solution of a transport equation, J. Funct. Anal., Vol. 76, 1988, pp. 110-125. Zbl0652.47031MR923047
  11. [11] E. Horst and R. Hunze, Weak solutions of the initial value problem for the unmodified nonlinear Vlasov equation, Math. Meth. Appl. Sci., Vol. 6, 1984, pp. 262-279. Zbl0556.35022MR751745
  12. [12] N. Hayashi and T. Ozawa, Lower Bounds for order of Decay or of Growth in Time for Solutions to Linear and Nonlinear Schrödinger Equations, Publ. RIMS, Kyoto University, Vol. 25, 1989, pp. 847-859. Zbl0714.35014MR1045995
  13. [13] R. Illner and H. Neunzert, An existence theorem for the unmodified Vlasov equation, Math. Meth. Appl. Sci., Vol. 1, 1979, pp. 530-540. Zbl0415.35076MR548686
  14. [14] R. Illner and G. Rein, Time decay of the solutions of the Vlasov-Poisson system in the plasma physical case, to appear in Math. Meth. Appl. Sci. Zbl0872.35087MR1414402
  15. [15] P.L. Lions and Th. Paul, Sur les mesures de Wigner, Rev. Mat. Iberoam., Vol. 9, No. 3, 1993, pp. 553-618. Zbl0801.35117MR1251718
  16. [16] P.L. Lions and B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Invent. Math., Vol. 105, 1991, pp. 415-430. Zbl0741.35061MR1115549
  17. [17] P.L. Lions and B. Perthame, Lemmes de moments, de moyenne et de dispersion, C. R. Acad. Sci. Paris, Vol. 314, 1992, pp. 801-806. Zbl0761.35085MR1166050
  18. [18] B. Perthame and S. Mischler, Solutions of the Boltzmann equation with infinite energy, to appear in SIAM J. Math. Anal. Zbl0889.35077MR1466666
  19. [19] B. Perthame, Time decay, Propagation of Low Moments and Dispersive Effects for Kinetic Equations, Comm. PDE, Vol. 21, 1996, pp. 659-686. Zbl0852.35139MR1387464
  20. [20] K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Diff. Eq., Vol. 95, 1992, pp. 281-303. Zbl0810.35089MR1165424
  21. [21] G. Rein, Growth estimates for the solutions of the Vlasov-Poisson system in the plasma physics case, to appear in Math. Nachrichten. Zbl0937.76096MR1621318
  22. [22] G. Rein, Selfgravitating systems in Newtonian theory - the Vlasov-Poisson system, to appear in Banach Center Publ. Zbl0893.35130MR1466518
  23. [23] J. Schaeffer, Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions, Comm. PDE., Vol. 16, N. 8-9, 1991, pp. 1313-1335. Zbl0746.35050MR1132787
  24. [24] E.M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton Mathematical Series 30, 1970. Zbl0207.13501MR290095

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.