Selfgravitating systems in Newtonian theory - the Vlasov-Poisson system
Banach Center Publications (1997)
- Volume: 41, Issue: 1, page 179-194
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] C. Bardos and P. Degond, Global existence for the Vlasov Poisson equation in 3 space variables with small initial data, Ann. Inst. Henri Poincaré, Analyse non linéaire 2 (1985), 101-111. Zbl0593.35076
- [2] J. Batt, Global symmetric solutions of the initial value problem of stellar dynamics, J. Differential Eqns. 25 (1977), 342-364. Zbl0366.35020
- [3] J. Batt, Asymptotic properties of spherically symmetric self-gravitating mass systems for t → ∞, Transport Theory and Statistical Mechanics 16 (1987), 763-778. Zbl0645.35010
- [4] J. Batt, W. Faltenbacher, and E. Horst, Stationary spherically symmetric models in stellar dynamics, Arch. Rational Mech. Anal. 93 (1986), 159-183 . Zbl0605.70008
- [5] J. Batt, P. Morrison, and G. Rein, Linear stability of stationary solutions of the Vlasov-Poisson system in three dimensions, Arch. Rational Mech. Anal. 130 (1995), 163-182. Zbl0828.76093
- [6] J. Batt and G. Rein, A rigorous stability result for the Vlasov-Poisson system in three dimensions, Anal. di Mat. Pura ed Appl. 164 (1993), 133-154. Zbl0791.49030
- [7] F. Bouchut, Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimensions, J. Functional Analysis 111 (1993), 239-258. Zbl0777.35059
- [8] K. Ganguly and H. Victory, On the convergence of particle methods for multidimensional Vlasov-Poisson systems, SIAM J. Numer. Anal. 26 (1989), 249-288 Zbl0669.76146
- [9] R. Glassey and J. Schaeffer, On symmetric solutions of the relativistic Vlasov-Poisson system, Commun. Math. Phys. 101 (1985), 459-473. Zbl0582.35110
- [10] Y. Guo and W. Strauss, Nonlinear instability of double-humped equilibria, Ann. Inst. Henri Poincaré, Analyse non linéaire 12 (1995), 339-352 . Zbl0836.35130
- [11] Y. Guo and W. Strauss, Instability of periodic BGK equilibria, Commun. Pure and Appl. Math. XLVIII (1995), 861-894. Zbl0840.45012
- [12] E. Horst, On the classical solutions of the initial value problem for the unmodified non-linear Vlasov equation II, Math. Meth. in the Appl. Sci. 4 (1982), 19-32. Zbl0485.35079
- [13] E. Horst, On the asymptotic growth of the solutions of the Vlasov-Poisson system, Math. Meth. in the Appl. Sci. 16 (1993), 75-85. Zbl0782.35079
- [14] R. Illner and G. Rein, Time decay of the solutions of the Vlasov-Poisson system in the plasma physical case, Math. Meth. in the Appl. Sci. 19 (1996), 1409-1413. Zbl0872.35087
- [15] P.-L. Lions and B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Invent. math. 105 (1991), 415-430. Zbl0741.35061
- [16] K. Pfaffelmoser, Globale klassische Lösungen des dreidimensionalen Vlasov-Poisson-Systems, Dissertation, München 1989 . Zbl0722.35090
- [17] K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Differential Eqns. 95 (1992), 281-303. Zbl0810.35089
- [18] M. Reed and B. Simon, Methods of Modern Mathematical Physics II, Academic Press, New York, 1975. Zbl0308.47002
- [19] G. Rein, Generic global solutions of the relativistic Vlasov-Maxwell system of plasma physics, Commun. Math. Phys. 135 (1990), 41-78. Zbl0722.35091
- [20] G. Rein, Nonlinear stability for the Vlasov-Poisson system--the energy-Casimir method, Math. Meth. in the Appl. Sci. 17 (1994), 1129-1140. Zbl0814.76094
- [21] G. Rein, Growth estimates for the solutions of the Vlasov-Poisson system in the plasma physics case, Math. Nachrichten, to appear.
- [22] G. Rein, Nonlinear stability of homogeneous models in Newtonian cosmology, Arch. Rational Mech. Anal., to appear.
- [23] G. Rein and A. Rendall, Global existence of classical solutions to the Vlasov-Poisson system in a three-dimensional, cosmological setting, Arch. Rational Mech. Anal. 126 (1994), 183-201. Zbl0808.35109
- [24] J. Schaeffer, Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions, Commun. Part. Diff. Eqns. 16 (1991), 1313-1335. Zbl0746.35050
- [25] J. Schaeffer, Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions (`The Good, the Bad, and the Ugly'), unpublished manuscript.