Selfgravitating systems in Newtonian theory - the Vlasov-Poisson system

Gerhard Rein

Banach Center Publications (1997)

  • Volume: 41, Issue: 1, page 179-194
  • ISSN: 0137-6934

Abstract

top
We give a review of results on the initial value problem for the Vlasov--Poisson system, concentrating on the main ingredients in the proof of global existence of classical solutions.

How to cite

top

Rein, Gerhard. "Selfgravitating systems in Newtonian theory - the Vlasov-Poisson system." Banach Center Publications 41.1 (1997): 179-194. <http://eudml.org/doc/252246>.

@article{Rein1997,
abstract = {We give a review of results on the initial value problem for the Vlasov--Poisson system, concentrating on the main ingredients in the proof of global existence of classical solutions.},
author = {Rein, Gerhard},
journal = {Banach Center Publications},
keywords = {Vlasov-Poisson system; global existence},
language = {eng},
number = {1},
pages = {179-194},
title = {Selfgravitating systems in Newtonian theory - the Vlasov-Poisson system},
url = {http://eudml.org/doc/252246},
volume = {41},
year = {1997},
}

TY - JOUR
AU - Rein, Gerhard
TI - Selfgravitating systems in Newtonian theory - the Vlasov-Poisson system
JO - Banach Center Publications
PY - 1997
VL - 41
IS - 1
SP - 179
EP - 194
AB - We give a review of results on the initial value problem for the Vlasov--Poisson system, concentrating on the main ingredients in the proof of global existence of classical solutions.
LA - eng
KW - Vlasov-Poisson system; global existence
UR - http://eudml.org/doc/252246
ER -

References

top
  1. [1] C. Bardos and P. Degond, Global existence for the Vlasov Poisson equation in 3 space variables with small initial data, Ann. Inst. Henri Poincaré, Analyse non linéaire 2 (1985), 101-111. Zbl0593.35076
  2. [2] J. Batt, Global symmetric solutions of the initial value problem of stellar dynamics, J. Differential Eqns. 25 (1977), 342-364. Zbl0366.35020
  3. [3] J. Batt, Asymptotic properties of spherically symmetric self-gravitating mass systems for t → ∞, Transport Theory and Statistical Mechanics 16 (1987), 763-778. Zbl0645.35010
  4. [4] J. Batt, W. Faltenbacher, and E. Horst, Stationary spherically symmetric models in stellar dynamics, Arch. Rational Mech. Anal. 93 (1986), 159-183 . Zbl0605.70008
  5. [5] J. Batt, P. Morrison, and G. Rein, Linear stability of stationary solutions of the Vlasov-Poisson system in three dimensions, Arch. Rational Mech. Anal. 130 (1995), 163-182. Zbl0828.76093
  6. [6] J. Batt and G. Rein, A rigorous stability result for the Vlasov-Poisson system in three dimensions, Anal. di Mat. Pura ed Appl. 164 (1993), 133-154. Zbl0791.49030
  7. [7] F. Bouchut, Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimensions, J. Functional Analysis 111 (1993), 239-258. Zbl0777.35059
  8. [8] K. Ganguly and H. Victory, On the convergence of particle methods for multidimensional Vlasov-Poisson systems, SIAM J. Numer. Anal. 26 (1989), 249-288 Zbl0669.76146
  9. [9] R. Glassey and J. Schaeffer, On symmetric solutions of the relativistic Vlasov-Poisson system, Commun. Math. Phys. 101 (1985), 459-473. Zbl0582.35110
  10. [10] Y. Guo and W. Strauss, Nonlinear instability of double-humped equilibria, Ann. Inst. Henri Poincaré, Analyse non linéaire 12 (1995), 339-352 . Zbl0836.35130
  11. [11] Y. Guo and W. Strauss, Instability of periodic BGK equilibria, Commun. Pure and Appl. Math. XLVIII (1995), 861-894. Zbl0840.45012
  12. [12] E. Horst, On the classical solutions of the initial value problem for the unmodified non-linear Vlasov equation II, Math. Meth. in the Appl. Sci. 4 (1982), 19-32. Zbl0485.35079
  13. [13] E. Horst, On the asymptotic growth of the solutions of the Vlasov-Poisson system, Math. Meth. in the Appl. Sci. 16 (1993), 75-85. Zbl0782.35079
  14. [14] R. Illner and G. Rein, Time decay of the solutions of the Vlasov-Poisson system in the plasma physical case, Math. Meth. in the Appl. Sci. 19 (1996), 1409-1413. Zbl0872.35087
  15. [15] P.-L. Lions and B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Invent. math. 105 (1991), 415-430. Zbl0741.35061
  16. [16] K. Pfaffelmoser, Globale klassische Lösungen des dreidimensionalen Vlasov-Poisson-Systems, Dissertation, München 1989 . Zbl0722.35090
  17. [17] K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Differential Eqns. 95 (1992), 281-303. Zbl0810.35089
  18. [18] M. Reed and B. Simon, Methods of Modern Mathematical Physics II, Academic Press, New York, 1975. Zbl0308.47002
  19. [19] G. Rein, Generic global solutions of the relativistic Vlasov-Maxwell system of plasma physics, Commun. Math. Phys. 135 (1990), 41-78. Zbl0722.35091
  20. [20] G. Rein, Nonlinear stability for the Vlasov-Poisson system--the energy-Casimir method, Math. Meth. in the Appl. Sci. 17 (1994), 1129-1140. Zbl0814.76094
  21. [21] G. Rein, Growth estimates for the solutions of the Vlasov-Poisson system in the plasma physics case, Math. Nachrichten, to appear. 
  22. [22] G. Rein, Nonlinear stability of homogeneous models in Newtonian cosmology, Arch. Rational Mech. Anal., to appear. 
  23. [23] G. Rein and A. Rendall, Global existence of classical solutions to the Vlasov-Poisson system in a three-dimensional, cosmological setting, Arch. Rational Mech. Anal. 126 (1994), 183-201. Zbl0808.35109
  24. [24] J. Schaeffer, Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions, Commun. Part. Diff. Eqns. 16 (1991), 1313-1335. Zbl0746.35050
  25. [25] J. Schaeffer, Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions (`The Good, the Bad, and the Ugly'), unpublished manuscript. 

NotesEmbed ?

top

You must be logged in to post comments.