Periodic solutions for singular hamiltonian systems and closed geodesics on non-compact riemannian manifolds

Kazunaga Tanaka

Annales de l'I.H.P. Analyse non linéaire (2000)

  • Volume: 17, Issue: 1, page 1-33
  • ISSN: 0294-1449

How to cite

top

Tanaka, Kazunaga. "Periodic solutions for singular hamiltonian systems and closed geodesics on non-compact riemannian manifolds." Annales de l'I.H.P. Analyse non linéaire 17.1 (2000): 1-33. <http://eudml.org/doc/78485>.

@article{Tanaka2000,
author = {Tanaka, Kazunaga},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {energy problem; Hamiltonian systems; closed geodesics; Riemannian manifold},
language = {eng},
number = {1},
pages = {1-33},
publisher = {Gauthier-Villars},
title = {Periodic solutions for singular hamiltonian systems and closed geodesics on non-compact riemannian manifolds},
url = {http://eudml.org/doc/78485},
volume = {17},
year = {2000},
}

TY - JOUR
AU - Tanaka, Kazunaga
TI - Periodic solutions for singular hamiltonian systems and closed geodesics on non-compact riemannian manifolds
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2000
PB - Gauthier-Villars
VL - 17
IS - 1
SP - 1
EP - 33
LA - eng
KW - energy problem; Hamiltonian systems; closed geodesics; Riemannian manifold
UR - http://eudml.org/doc/78485
ER -

References

top
  1. [1] A. Ambrosetti and U. Bessi, Multiple periodic trajectories in a relativistic gravitational field, in: H. Berestycki, J.-M. Coron and I. Ekeland (Eds.), Variational Methods, Birkhäuser, 1990, pp. 373-381. Zbl0725.34038MR1205167
  2. [2] A. Ambrosetti and V. Coti Zelati, Closed orbits of fixed energy for singular Hamiltonian systems, Arch. Rat. Mech. Anal.112 (1990) 339-362. Zbl0737.70008MR1077264
  3. [3] A. Ambrosetti and V. Coti Zelati, Periodic Solutions of Singular Lagrangian Systems, Birkhäuser, Boston, 1993. Zbl0785.34032MR1267225
  4. [4] A. Ambrosetti and M. Struwe, Periodic motions for conservative systems with singular potentials, NoDEA Nonlinear Differential Equations Appl.1 (1994) 179- 202. Zbl0821.34036MR1273349
  5. [5] A. Bahri and Y.Y. Li, On a min-max procedure for the existence of a positive solution for certain scalar field equations in RN, Revista Mat. Iberoamericana6 (1990) 1-15. Zbl0731.35036MR1086148
  6. [6] A. Bahri and P.L. Lions, Morse index of some min-max critical points. I. Application to multiplicity results, Comm. Pure Appl. Math.41 (1988) 1027-1037. Zbl0645.58013MR968487
  7. [7] A. Bahri and P.L. Lions, On the existence of a positive solution of semilinear elliptic equations in unbounded domains, Ann. Inst. Henri Poincaré, Analyse Non Linéaire14 (1997) 365-413. Zbl0883.35045MR1450954
  8. [8] V. Bangert, Closed geodesics on complete surfaces, Math. Ann.251 (1980) 83- 96. Zbl0422.53024MR583827
  9. [9] V. Benci and D. Fortunato, Subharmonic solutions of prescribed minimal period for autonomous differential equations, in: Dell'Antonio and D'Onofrio (Eds.), Recent Advances in Hamiltonian Systems, World Scientific, Singapore, 1986. Zbl0663.70028MR902625
  10. [10] V. Benci and F. Giannoni, Periodic solutions of prescribed energy for a class of Hamiltonian systems with singular potentials, J. Differential Equations82 (1989) 60-70. Zbl0689.34034MR1023301
  11. [11] V. Benci and F. Giannoni, On the existence of closed geodesics on noncompact Riemannian manifolds, Duke Math. J.68 (1992) 195-215. Zbl0789.53028MR1191558
  12. [12] V. Coti Zelati, Periodic solutions for a class of planar, singular dynamical systems, J. Math. Pure Appl.68 (1989) 109-119. Zbl0633.34034MR985956
  13. [13] V. Coti Zelati and E. Serra, Collisions and non-collisions solutions for a class of Keplerian-like dynamical systems, Ann. Mat. Pura Appl.166 (4) (1994) 343-362. Zbl0832.70009MR1313812
  14. [14] G. Fang and N. Ghoussoub, Morse-type information on Palais-Smale sequences obtained by min-max principles, Comm. Pure Appl. Math.47 (1994) 1595-1653. Zbl0829.58008MR1303222
  15. [15] C. Greco, Remarks on periodic solutions, with prescribed energy, for singular Hamiltonian systems, Comment. Math. Univ. Carolin. 28 (1987) 661-672. Zbl0678.34052MR928681
  16. [16] W. Klingenberg, Lectures on Closed Geodesics, Grundlehren der Math. Wiss.230, Springer, Berlin, 1978. Zbl0397.58018MR478069
  17. [17] A.C. Lazer and S. Solimini, Nontrivial solutions of operator equations and Morse indices of critical points of min-max type, Nonlinear Analysis: T.M.A.12 (1988) 761-775. Zbl0667.47036MR954951
  18. [18] L. Pisani, Periodic solutions with prescribed energy for singular conservative systems involving strong force, Nonlinear Analysis: T.M.A.21 (1993) 167-179. Zbl0801.70012MR1233958
  19. [19] E. Serra and S. Terracini, Noncollision solutions to some singular minimization problems with Keplerian-like potentials, Nonlinear Analysis: T.M.A.22 (1994) 45- 62. Zbl0813.70006MR1256169
  20. [20] P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conf. Ser. in Math., Vol. 65, Amer. Math. Soc., Providence, RI, 1986. Zbl0609.58002MR845785
  21. [21] K. Tanaka, Morse indices at critical points related to the symmetric mountain pass theorem and applications, Comm. Partial Differential Equations14 (1989) 99-128. Zbl0669.34035MR973271
  22. [22] K. Tanaka, A prescribed energy problem for a singular Hamiltonian system with a weak force, J. Funct. Anal.113 (1993) 351-390. Zbl0771.70014MR1218100
  23. [23] K. Tanaka, A prescribed-energy problem for a conservative singular Hamiltonian system, Arch. Rational Mech. Anal.128 (1994) 127-164. Zbl0823.34047MR1308850
  24. [24] C. Viterbo, Indice de Morse des points critiques obtenus par minimax, Ann. Inst. Henri Poincaré, Analyse non Linéaire5 (1988) 221-225. Zbl0695.58007MR954472
  25. [25] G. Thorbergsson, Closed geodesics on non-compact Riemannian manifold, Math. Z.159 (1978) 249-258. Zbl0358.53027MR493872

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.