Periodic solutions for singular hamiltonian systems and closed geodesics on non-compact riemannian manifolds
Annales de l'I.H.P. Analyse non linéaire (2000)
- Volume: 17, Issue: 1, page 1-33
- ISSN: 0294-1449
Access Full Article
topHow to cite
topTanaka, Kazunaga. "Periodic solutions for singular hamiltonian systems and closed geodesics on non-compact riemannian manifolds." Annales de l'I.H.P. Analyse non linéaire 17.1 (2000): 1-33. <http://eudml.org/doc/78485>.
@article{Tanaka2000,
author = {Tanaka, Kazunaga},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {energy problem; Hamiltonian systems; closed geodesics; Riemannian manifold},
language = {eng},
number = {1},
pages = {1-33},
publisher = {Gauthier-Villars},
title = {Periodic solutions for singular hamiltonian systems and closed geodesics on non-compact riemannian manifolds},
url = {http://eudml.org/doc/78485},
volume = {17},
year = {2000},
}
TY - JOUR
AU - Tanaka, Kazunaga
TI - Periodic solutions for singular hamiltonian systems and closed geodesics on non-compact riemannian manifolds
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2000
PB - Gauthier-Villars
VL - 17
IS - 1
SP - 1
EP - 33
LA - eng
KW - energy problem; Hamiltonian systems; closed geodesics; Riemannian manifold
UR - http://eudml.org/doc/78485
ER -
References
top- [1] A. Ambrosetti and U. Bessi, Multiple periodic trajectories in a relativistic gravitational field, in: H. Berestycki, J.-M. Coron and I. Ekeland (Eds.), Variational Methods, Birkhäuser, 1990, pp. 373-381. Zbl0725.34038MR1205167
- [2] A. Ambrosetti and V. Coti Zelati, Closed orbits of fixed energy for singular Hamiltonian systems, Arch. Rat. Mech. Anal.112 (1990) 339-362. Zbl0737.70008MR1077264
- [3] A. Ambrosetti and V. Coti Zelati, Periodic Solutions of Singular Lagrangian Systems, Birkhäuser, Boston, 1993. Zbl0785.34032MR1267225
- [4] A. Ambrosetti and M. Struwe, Periodic motions for conservative systems with singular potentials, NoDEA Nonlinear Differential Equations Appl.1 (1994) 179- 202. Zbl0821.34036MR1273349
- [5] A. Bahri and Y.Y. Li, On a min-max procedure for the existence of a positive solution for certain scalar field equations in RN, Revista Mat. Iberoamericana6 (1990) 1-15. Zbl0731.35036MR1086148
- [6] A. Bahri and P.L. Lions, Morse index of some min-max critical points. I. Application to multiplicity results, Comm. Pure Appl. Math.41 (1988) 1027-1037. Zbl0645.58013MR968487
- [7] A. Bahri and P.L. Lions, On the existence of a positive solution of semilinear elliptic equations in unbounded domains, Ann. Inst. Henri Poincaré, Analyse Non Linéaire14 (1997) 365-413. Zbl0883.35045MR1450954
- [8] V. Bangert, Closed geodesics on complete surfaces, Math. Ann.251 (1980) 83- 96. Zbl0422.53024MR583827
- [9] V. Benci and D. Fortunato, Subharmonic solutions of prescribed minimal period for autonomous differential equations, in: Dell'Antonio and D'Onofrio (Eds.), Recent Advances in Hamiltonian Systems, World Scientific, Singapore, 1986. Zbl0663.70028MR902625
- [10] V. Benci and F. Giannoni, Periodic solutions of prescribed energy for a class of Hamiltonian systems with singular potentials, J. Differential Equations82 (1989) 60-70. Zbl0689.34034MR1023301
- [11] V. Benci and F. Giannoni, On the existence of closed geodesics on noncompact Riemannian manifolds, Duke Math. J.68 (1992) 195-215. Zbl0789.53028MR1191558
- [12] V. Coti Zelati, Periodic solutions for a class of planar, singular dynamical systems, J. Math. Pure Appl.68 (1989) 109-119. Zbl0633.34034MR985956
- [13] V. Coti Zelati and E. Serra, Collisions and non-collisions solutions for a class of Keplerian-like dynamical systems, Ann. Mat. Pura Appl.166 (4) (1994) 343-362. Zbl0832.70009MR1313812
- [14] G. Fang and N. Ghoussoub, Morse-type information on Palais-Smale sequences obtained by min-max principles, Comm. Pure Appl. Math.47 (1994) 1595-1653. Zbl0829.58008MR1303222
- [15] C. Greco, Remarks on periodic solutions, with prescribed energy, for singular Hamiltonian systems, Comment. Math. Univ. Carolin. 28 (1987) 661-672. Zbl0678.34052MR928681
- [16] W. Klingenberg, Lectures on Closed Geodesics, Grundlehren der Math. Wiss.230, Springer, Berlin, 1978. Zbl0397.58018MR478069
- [17] A.C. Lazer and S. Solimini, Nontrivial solutions of operator equations and Morse indices of critical points of min-max type, Nonlinear Analysis: T.M.A.12 (1988) 761-775. Zbl0667.47036MR954951
- [18] L. Pisani, Periodic solutions with prescribed energy for singular conservative systems involving strong force, Nonlinear Analysis: T.M.A.21 (1993) 167-179. Zbl0801.70012MR1233958
- [19] E. Serra and S. Terracini, Noncollision solutions to some singular minimization problems with Keplerian-like potentials, Nonlinear Analysis: T.M.A.22 (1994) 45- 62. Zbl0813.70006MR1256169
- [20] P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conf. Ser. in Math., Vol. 65, Amer. Math. Soc., Providence, RI, 1986. Zbl0609.58002MR845785
- [21] K. Tanaka, Morse indices at critical points related to the symmetric mountain pass theorem and applications, Comm. Partial Differential Equations14 (1989) 99-128. Zbl0669.34035MR973271
- [22] K. Tanaka, A prescribed energy problem for a singular Hamiltonian system with a weak force, J. Funct. Anal.113 (1993) 351-390. Zbl0771.70014MR1218100
- [23] K. Tanaka, A prescribed-energy problem for a conservative singular Hamiltonian system, Arch. Rational Mech. Anal.128 (1994) 127-164. Zbl0823.34047MR1308850
- [24] C. Viterbo, Indice de Morse des points critiques obtenus par minimax, Ann. Inst. Henri Poincaré, Analyse non Linéaire5 (1988) 221-225. Zbl0695.58007MR954472
- [25] G. Thorbergsson, Closed geodesics on non-compact Riemannian manifold, Math. Z.159 (1978) 249-258. Zbl0358.53027MR493872
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.