Local boundedness of minimizers of anisotropic functionals

Andrea Cianchi

Annales de l'I.H.P. Analyse non linéaire (2000)

  • Volume: 17, Issue: 2, page 147-168
  • ISSN: 0294-1449

How to cite

top

Cianchi, Andrea. "Local boundedness of minimizers of anisotropic functionals." Annales de l'I.H.P. Analyse non linéaire 17.2 (2000): 147-168. <http://eudml.org/doc/78489>.

@article{Cianchi2000,
author = {Cianchi, Andrea},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {calculus of variations; regularity; bounded solutions; anisotropic functionals},
language = {eng},
number = {2},
pages = {147-168},
publisher = {Gauthier-Villars},
title = {Local boundedness of minimizers of anisotropic functionals},
url = {http://eudml.org/doc/78489},
volume = {17},
year = {2000},
}

TY - JOUR
AU - Cianchi, Andrea
TI - Local boundedness of minimizers of anisotropic functionals
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2000
PB - Gauthier-Villars
VL - 17
IS - 2
SP - 147
EP - 168
LA - eng
KW - calculus of variations; regularity; bounded solutions; anisotropic functionals
UR - http://eudml.org/doc/78489
ER -

References

top
  1. [2] Battacharya T., Leonetti F., W2,2 regularity for weak solutions of elliptic systems with nonstandard growth, J. Math. Anal. Appl.176 (1993) 224-234. Zbl0809.35008MR1222166
  2. [3] Cianchi A., Boundedness of solutions to variational problems under general growth conditions, Comm. Partial Differential Equations22 (1997) 1629-1646. Zbl0892.35048MR1469584
  3. [4] Cianchi A.A fully anisotropic Sobolev inequality, Pacific Journal of Math., to appear. Zbl0966.46017
  4. [5] De Giorgi E., Sulla differenziabilità e 1' analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino (Classe di Sci. Mat. Fis. Nat.)3 (3) (1957) 25-43. Zbl0084.31901MR93649
  5. [6] Dall' Aglio A., Mascolo E., Papi G., Regularity for local minima of functionals with non standard growth conditions, Rend. Mat.18 (7) (1998) 305-326. Zbl0917.49010MR1659830
  6. [7] Fusco N., Sbordone C., Some remarks on the regularity of minima of anisotropic integrals, Comm. Partial Differential Equations18 (1993) 153-167. Zbl0795.49025MR1211728
  7. [8] Giaquinta M., Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Math. Studies, Vol. 105, Princeton Univ. Press, Princeton, 1983. Zbl0516.49003MR717034
  8. [9] Giaquinta M., Growth conditions and regularity, a counterexample, Manuscr. Math.59 (1987) 245-248. Zbl0638.49005MR905200
  9. [10] Giaquinta M., Giusti E., Quasi-minima, Ann. Inst. H. Poincaré (Analyse non Linéaire)1 (1984) 79-107. Zbl0541.49008
  10. [11] Giusti E., Direct Methods in the Calculus of Variations, Unione Matematica Italiana, Bologna, 1994. Zbl0942.49002MR1707291
  11. [12] Min-Chung Hong, Some remarks on the minimizers of variational integrals with non standard growth conditions, Boll. Un. Mat. Ital.6-A (1992) 91-101. Zbl0768.49022MR1164739
  12. [13] Korolev A.G., On the boundedness of generalized solutions of elliptic differential equations with nonpower nonlinearities, Math. USSR Sbornik66 (1990) 83-106. Zbl0706.35030MR988847
  13. [14] Ladyzenskaya O.A., Ural'Ceva N.N., Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968. Zbl0164.13002MR244627
  14. [15] Leonetti F., Weak differentiability for solutions to nonlinear elliptic systems with ( p, q) growth conditions, Ann. Mat. Pura Appl.162 (1992) 349-366. Zbl0801.35023MR1199662
  15. [16] Lieberman G.M., The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations, Comm. Partial Differential Equations16 (1991) 311-361. Zbl0742.35028MR1104103
  16. [17] Marcellini P., Un exemple de solution discontinue d' un probléme variationnel dans le cas scalaire, Preprint, 1987. 
  17. [ 18] Marcellini P., Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions, Arch. Rat. Mech. Anal.105 (1989) 267-284. Zbl0667.49032MR969900
  18. [ 19] Marcellini P., Regularity and existence of solutions of elliptic equations with p, q- growth conditions, J. Differential Equations90 (1991) 1-30. Zbl0724.35043MR1094446
  19. [20] Marcellini P., Regularity for elliptic equations with general growth conditions, J. Differential Equations105 (1993) 296-333. Zbl0812.35042MR1240398
  20. [21] Mascolo E., Papi G., Local boundedness of minimizers of integrals of the calculus of variations, Ann. Mat. Pura Appl.167 (1994) 323-339. Zbl0819.49023MR1313560
  21. [22] Mascolo E., Papi G., Harnack inequality for minimizers of integral functionals with general growth conditions, Nonlinear Differential Equations Appl.3 (1996) 232- 244. Zbl0855.49027MR1385885
  22. [23] Moscariello G., Nania L., Hölder continuity of minimizers of functionals with nonstandard growth conditions, Ric. Mat.40 (1991) 259-273. Zbl0773.49019MR1194158
  23. [24] Stroffolini B., Global boundedness of solutions of anisotropic variational problems, Boll. Un. Mat. Ital5-A (1991) 345-352. Zbl0754.49026MR1138548
  24. [25] Talenti G., Boundedness of minimizers, Hokkaido Math. J.19 (1990) 259-279. Zbl0723.58015MR1059170

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.