Local boundedness of minimizers of anisotropic functionals
Annales de l'I.H.P. Analyse non linéaire (2000)
- Volume: 17, Issue: 2, page 147-168
- ISSN: 0294-1449
Access Full Article
topHow to cite
topCianchi, Andrea. "Local boundedness of minimizers of anisotropic functionals." Annales de l'I.H.P. Analyse non linéaire 17.2 (2000): 147-168. <http://eudml.org/doc/78489>.
@article{Cianchi2000,
author = {Cianchi, Andrea},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {calculus of variations; regularity; bounded solutions; anisotropic functionals},
language = {eng},
number = {2},
pages = {147-168},
publisher = {Gauthier-Villars},
title = {Local boundedness of minimizers of anisotropic functionals},
url = {http://eudml.org/doc/78489},
volume = {17},
year = {2000},
}
TY - JOUR
AU - Cianchi, Andrea
TI - Local boundedness of minimizers of anisotropic functionals
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2000
PB - Gauthier-Villars
VL - 17
IS - 2
SP - 147
EP - 168
LA - eng
KW - calculus of variations; regularity; bounded solutions; anisotropic functionals
UR - http://eudml.org/doc/78489
ER -
References
top- [2] Battacharya T., Leonetti F., W2,2 regularity for weak solutions of elliptic systems with nonstandard growth, J. Math. Anal. Appl.176 (1993) 224-234. Zbl0809.35008MR1222166
- [3] Cianchi A., Boundedness of solutions to variational problems under general growth conditions, Comm. Partial Differential Equations22 (1997) 1629-1646. Zbl0892.35048MR1469584
- [4] Cianchi A.A fully anisotropic Sobolev inequality, Pacific Journal of Math., to appear. Zbl0966.46017
- [5] De Giorgi E., Sulla differenziabilità e 1' analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino (Classe di Sci. Mat. Fis. Nat.)3 (3) (1957) 25-43. Zbl0084.31901MR93649
- [6] Dall' Aglio A., Mascolo E., Papi G., Regularity for local minima of functionals with non standard growth conditions, Rend. Mat.18 (7) (1998) 305-326. Zbl0917.49010MR1659830
- [7] Fusco N., Sbordone C., Some remarks on the regularity of minima of anisotropic integrals, Comm. Partial Differential Equations18 (1993) 153-167. Zbl0795.49025MR1211728
- [8] Giaquinta M., Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Math. Studies, Vol. 105, Princeton Univ. Press, Princeton, 1983. Zbl0516.49003MR717034
- [9] Giaquinta M., Growth conditions and regularity, a counterexample, Manuscr. Math.59 (1987) 245-248. Zbl0638.49005MR905200
- [10] Giaquinta M., Giusti E., Quasi-minima, Ann. Inst. H. Poincaré (Analyse non Linéaire)1 (1984) 79-107. Zbl0541.49008
- [11] Giusti E., Direct Methods in the Calculus of Variations, Unione Matematica Italiana, Bologna, 1994. Zbl0942.49002MR1707291
- [12] Min-Chung Hong, Some remarks on the minimizers of variational integrals with non standard growth conditions, Boll. Un. Mat. Ital.6-A (1992) 91-101. Zbl0768.49022MR1164739
- [13] Korolev A.G., On the boundedness of generalized solutions of elliptic differential equations with nonpower nonlinearities, Math. USSR Sbornik66 (1990) 83-106. Zbl0706.35030MR988847
- [14] Ladyzenskaya O.A., Ural'Ceva N.N., Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968. Zbl0164.13002MR244627
- [15] Leonetti F., Weak differentiability for solutions to nonlinear elliptic systems with ( p, q) growth conditions, Ann. Mat. Pura Appl.162 (1992) 349-366. Zbl0801.35023MR1199662
- [16] Lieberman G.M., The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations, Comm. Partial Differential Equations16 (1991) 311-361. Zbl0742.35028MR1104103
- [17] Marcellini P., Un exemple de solution discontinue d' un probléme variationnel dans le cas scalaire, Preprint, 1987.
- [ 18] Marcellini P., Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions, Arch. Rat. Mech. Anal.105 (1989) 267-284. Zbl0667.49032MR969900
- [ 19] Marcellini P., Regularity and existence of solutions of elliptic equations with p, q- growth conditions, J. Differential Equations90 (1991) 1-30. Zbl0724.35043MR1094446
- [20] Marcellini P., Regularity for elliptic equations with general growth conditions, J. Differential Equations105 (1993) 296-333. Zbl0812.35042MR1240398
- [21] Mascolo E., Papi G., Local boundedness of minimizers of integrals of the calculus of variations, Ann. Mat. Pura Appl.167 (1994) 323-339. Zbl0819.49023MR1313560
- [22] Mascolo E., Papi G., Harnack inequality for minimizers of integral functionals with general growth conditions, Nonlinear Differential Equations Appl.3 (1996) 232- 244. Zbl0855.49027MR1385885
- [23] Moscariello G., Nania L., Hölder continuity of minimizers of functionals with nonstandard growth conditions, Ric. Mat.40 (1991) 259-273. Zbl0773.49019MR1194158
- [24] Stroffolini B., Global boundedness of solutions of anisotropic variational problems, Boll. Un. Mat. Ital5-A (1991) 345-352. Zbl0754.49026MR1138548
- [25] Talenti G., Boundedness of minimizers, Hokkaido Math. J.19 (1990) 259-279. Zbl0723.58015MR1059170
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.