Existence and nonexistence results for anisotropic quasilinear elliptic equations

Ilaria Fragalà; Filippo Gazzola; Bernd Kawohl

Annales de l'I.H.P. Analyse non linéaire (2004)

  • Volume: 21, Issue: 5, page 715-734
  • ISSN: 0294-1449

How to cite

top

Fragalà, Ilaria, Gazzola, Filippo, and Kawohl, Bernd. "Existence and nonexistence results for anisotropic quasilinear elliptic equations." Annales de l'I.H.P. Analyse non linéaire 21.5 (2004): 715-734. <http://eudml.org/doc/78636>.

@article{Fragalà2004,
author = {Fragalà, Ilaria, Gazzola, Filippo, Kawohl, Bernd},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {anisotropic Sobolev spaces; critical exponents; minimax methods; Pokhozhaev identity},
language = {eng},
number = {5},
pages = {715-734},
publisher = {Elsevier},
title = {Existence and nonexistence results for anisotropic quasilinear elliptic equations},
url = {http://eudml.org/doc/78636},
volume = {21},
year = {2004},
}

TY - JOUR
AU - Fragalà, Ilaria
AU - Gazzola, Filippo
AU - Kawohl, Bernd
TI - Existence and nonexistence results for anisotropic quasilinear elliptic equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2004
PB - Elsevier
VL - 21
IS - 5
SP - 715
EP - 734
LA - eng
KW - anisotropic Sobolev spaces; critical exponents; minimax methods; Pokhozhaev identity
UR - http://eudml.org/doc/78636
ER -

References

top
  1. [1] Acerbi E., Fusco N., Partial regularity under anisotropic (p,q) growth conditions, J. Differential Equations107 (1994) 46-67. Zbl0807.49010MR1260848
  2. [2] Ambrosetti A., Rabinowitz P.H., Dual variational methods in critical point theory and applications, J. Funct. Anal.14 (1973) 349-381. Zbl0273.49063MR370183
  3. [3] Belloni M., Kawohl B., The pseudo-p-Laplace eigenvalue problem and viscosity solutions as p→∞, ESAIM COCV10 (2004) 28-52. Zbl1092.35074
  4. [4] Brezis H., Kato T., Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures Appl.58 (1979) 137-151. Zbl0408.35025MR539217
  5. [5] Cianchi A., Local boundedness of minimizers of anisotropic functionals, Ann. Inst. H. Poincaré ANL17 (2000) 147-168. Zbl0984.49019MR1753091
  6. [6] Dal Maso G., Murat F., Almost everywhere convergence of gradients of solutions to nonlinear elliptic systems, Nonlinear Anal. TMA31 (1998) 405-412. Zbl0890.35039MR1487552
  7. [7] Degiovanni M., Musesti A., Squassina M., On the regularity of solutions in the Pucci–Serrin identity, Calc. Var. Partial Differential Equations18 (2003) 317-334. Zbl1046.35039MR2018671
  8. [8] Egnell H., Existence and nonexistence results for m-Laplace equations involving critical Sobolev exponents, Arch. Rational Mech. Anal.104 (1988) 57-77. Zbl0675.35036MR956567
  9. [9] Gazzola F., Critical exponents which relate embedding inequalities with quasilinear elliptic problems, in: Proc. 4th Int. Conf. Dyn. Syst. Diff. Eq., Wilmington, 2002, pp. 327-335. Zbl1174.35318MR2018132
  10. [10] Giaquinta M., Growth conditions and regularity, a counterexample, Manuscripta Math.59 (1987) 245-248. Zbl0638.49005MR905200
  11. [11] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001. Zbl1042.35002MR1814364
  12. [12] Guedda M., Veron L., Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal. TMA13 (1989) 879-902. Zbl0714.35032MR1009077
  13. [13] Kolodii I.M., An estimate of the maximum of the modulus of generalized solutions of the Dirichlet problem, for elliptic equations of divergent form, Ukrainian Math. J.47 (1995) 733-748. Zbl0937.35063MR1356907
  14. [14] Kruzhkov S.N., Kolodii I.M., On the theory of embedding of anisotropic Sobolev spaces, Russian Math. Surveys38 (1983) 188-189. Zbl0534.46022MR695478
  15. [15] Ladyzhenskaya O.A., Ural'tseva N.N., Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968. Zbl0164.13002MR244627
  16. [16] Lieberman G.M., Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. TMA12 (1988) 1203-1219. Zbl0675.35042MR969499
  17. [17] Lieberman G.M., Gradient estimates for a new class of degenerate elliptic and parabolic equations, Ann. Sc. Norm. Sup. Pisa21 (1994) 497-522. Zbl0839.35018MR1318770
  18. [18] Marcellini P., Regularity and existence of solutions of elliptic equations with p,q-growth conditions, J. Differential Equations90 (1991) 1-30. Zbl0724.35043MR1094446
  19. [19] Nikol'skii S.M., On imbedding, continuation and approximation theorems for differentiable functions of several variables, Russian Math. Surv.16 (1961) 55-104. Zbl0117.29101MR149267
  20. [20] Otani M., Existence and nonexistence of nontrivial solutions of some nonlinear degenerate elliptic equations, J. Funct. Anal.76 (1988) 140-159. Zbl0662.35047MR923049
  21. [21] Pohožaev S.J., Eigenfunctions of the equation Δu+λf(u)=0, Soviet Math. Dokl.6 (1965) 1408-1411. 
  22. [22] Pohožaev S.J., On the eigenfunction of quasilinear elliptic equations, Math. USSR Sbornik11 (1970) 171-188. 
  23. [23] Pucci P., Serrin J., A general variational identity, Indiana Univ. Math. J.35 (1986) 681-703. Zbl0625.35027MR855181
  24. [24] Rákosnik J., Some remarks to anisotropic Sobolev spaces I, Beiträge zur Analysis13 (1979) 55-68. Zbl0399.46025MR536217
  25. [25] Rákosnik J., Some remarks to anisotropic Sobolev spaces II, Beiträge zur Analysis15 (1981) 127-140. Zbl0494.46034MR614784
  26. [26] Tolksdorf P., On the Dirichlet problem for quasilinear equations in domains with conical boundary points, Comm. Partial Differential Equations8 (1983) 773-817. Zbl0515.35024MR700735
  27. [27] Troisi M., Teoremi di inclusione per spazi di Sobolev non isotropi, Ricerche Mat.18 (1969) 3-24. Zbl0182.16802MR415302
  28. [28] Ural'tseva N.N., Urdaletova A.B., The boundedness of the gradients of generalized solutions of degenerate quasilinear nonuniformly elliptic equations, Vestnik Leningrad Univ. Math.16 (1984) 263-270. Zbl0569.35029
  29. [29] Ven'-tuan L., On embedding theorems for spaces of functions with partial derivatives of various degrees of summability, Vestnik Leningrad Univ.16 (1961) 23-37, (in Russian). Zbl0100.31803MR143020

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.