Existence and nonexistence results for anisotropic quasilinear elliptic equations
Ilaria Fragalà; Filippo Gazzola; Bernd Kawohl
Annales de l'I.H.P. Analyse non linéaire (2004)
- Volume: 21, Issue: 5, page 715-734
- ISSN: 0294-1449
Access Full Article
topHow to cite
topFragalà, Ilaria, Gazzola, Filippo, and Kawohl, Bernd. "Existence and nonexistence results for anisotropic quasilinear elliptic equations." Annales de l'I.H.P. Analyse non linéaire 21.5 (2004): 715-734. <http://eudml.org/doc/78636>.
@article{Fragalà2004,
author = {Fragalà, Ilaria, Gazzola, Filippo, Kawohl, Bernd},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {anisotropic Sobolev spaces; critical exponents; minimax methods; Pokhozhaev identity},
language = {eng},
number = {5},
pages = {715-734},
publisher = {Elsevier},
title = {Existence and nonexistence results for anisotropic quasilinear elliptic equations},
url = {http://eudml.org/doc/78636},
volume = {21},
year = {2004},
}
TY - JOUR
AU - Fragalà, Ilaria
AU - Gazzola, Filippo
AU - Kawohl, Bernd
TI - Existence and nonexistence results for anisotropic quasilinear elliptic equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2004
PB - Elsevier
VL - 21
IS - 5
SP - 715
EP - 734
LA - eng
KW - anisotropic Sobolev spaces; critical exponents; minimax methods; Pokhozhaev identity
UR - http://eudml.org/doc/78636
ER -
References
top- [1] Acerbi E., Fusco N., Partial regularity under anisotropic (p,q) growth conditions, J. Differential Equations107 (1994) 46-67. Zbl0807.49010MR1260848
- [2] Ambrosetti A., Rabinowitz P.H., Dual variational methods in critical point theory and applications, J. Funct. Anal.14 (1973) 349-381. Zbl0273.49063MR370183
- [3] Belloni M., Kawohl B., The pseudo-p-Laplace eigenvalue problem and viscosity solutions as p→∞, ESAIM COCV10 (2004) 28-52. Zbl1092.35074
- [4] Brezis H., Kato T., Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures Appl.58 (1979) 137-151. Zbl0408.35025MR539217
- [5] Cianchi A., Local boundedness of minimizers of anisotropic functionals, Ann. Inst. H. Poincaré ANL17 (2000) 147-168. Zbl0984.49019MR1753091
- [6] Dal Maso G., Murat F., Almost everywhere convergence of gradients of solutions to nonlinear elliptic systems, Nonlinear Anal. TMA31 (1998) 405-412. Zbl0890.35039MR1487552
- [7] Degiovanni M., Musesti A., Squassina M., On the regularity of solutions in the Pucci–Serrin identity, Calc. Var. Partial Differential Equations18 (2003) 317-334. Zbl1046.35039MR2018671
- [8] Egnell H., Existence and nonexistence results for m-Laplace equations involving critical Sobolev exponents, Arch. Rational Mech. Anal.104 (1988) 57-77. Zbl0675.35036MR956567
- [9] Gazzola F., Critical exponents which relate embedding inequalities with quasilinear elliptic problems, in: Proc. 4th Int. Conf. Dyn. Syst. Diff. Eq., Wilmington, 2002, pp. 327-335. Zbl1174.35318MR2018132
- [10] Giaquinta M., Growth conditions and regularity, a counterexample, Manuscripta Math.59 (1987) 245-248. Zbl0638.49005MR905200
- [11] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001. Zbl1042.35002MR1814364
- [12] Guedda M., Veron L., Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal. TMA13 (1989) 879-902. Zbl0714.35032MR1009077
- [13] Kolodii I.M., An estimate of the maximum of the modulus of generalized solutions of the Dirichlet problem, for elliptic equations of divergent form, Ukrainian Math. J.47 (1995) 733-748. Zbl0937.35063MR1356907
- [14] Kruzhkov S.N., Kolodii I.M., On the theory of embedding of anisotropic Sobolev spaces, Russian Math. Surveys38 (1983) 188-189. Zbl0534.46022MR695478
- [15] Ladyzhenskaya O.A., Ural'tseva N.N., Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968. Zbl0164.13002MR244627
- [16] Lieberman G.M., Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. TMA12 (1988) 1203-1219. Zbl0675.35042MR969499
- [17] Lieberman G.M., Gradient estimates for a new class of degenerate elliptic and parabolic equations, Ann. Sc. Norm. Sup. Pisa21 (1994) 497-522. Zbl0839.35018MR1318770
- [18] Marcellini P., Regularity and existence of solutions of elliptic equations with p,q-growth conditions, J. Differential Equations90 (1991) 1-30. Zbl0724.35043MR1094446
- [19] Nikol'skii S.M., On imbedding, continuation and approximation theorems for differentiable functions of several variables, Russian Math. Surv.16 (1961) 55-104. Zbl0117.29101MR149267
- [20] Otani M., Existence and nonexistence of nontrivial solutions of some nonlinear degenerate elliptic equations, J. Funct. Anal.76 (1988) 140-159. Zbl0662.35047MR923049
- [21] Pohožaev S.J., Eigenfunctions of the equation Δu+λf(u)=0, Soviet Math. Dokl.6 (1965) 1408-1411.
- [22] Pohožaev S.J., On the eigenfunction of quasilinear elliptic equations, Math. USSR Sbornik11 (1970) 171-188.
- [23] Pucci P., Serrin J., A general variational identity, Indiana Univ. Math. J.35 (1986) 681-703. Zbl0625.35027MR855181
- [24] Rákosnik J., Some remarks to anisotropic Sobolev spaces I, Beiträge zur Analysis13 (1979) 55-68. Zbl0399.46025MR536217
- [25] Rákosnik J., Some remarks to anisotropic Sobolev spaces II, Beiträge zur Analysis15 (1981) 127-140. Zbl0494.46034MR614784
- [26] Tolksdorf P., On the Dirichlet problem for quasilinear equations in domains with conical boundary points, Comm. Partial Differential Equations8 (1983) 773-817. Zbl0515.35024MR700735
- [27] Troisi M., Teoremi di inclusione per spazi di Sobolev non isotropi, Ricerche Mat.18 (1969) 3-24. Zbl0182.16802MR415302
- [28] Ural'tseva N.N., Urdaletova A.B., The boundedness of the gradients of generalized solutions of degenerate quasilinear nonuniformly elliptic equations, Vestnik Leningrad Univ. Math.16 (1984) 263-270. Zbl0569.35029
- [29] Ven'-tuan L., On embedding theorems for spaces of functions with partial derivatives of various degrees of summability, Vestnik Leningrad Univ.16 (1961) 23-37, (in Russian). Zbl0100.31803MR143020
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.