Sinai-Ruelle-Bowen measures for contracting Lorenz maps and flows

Roger J. Metzger

Annales de l'I.H.P. Analyse non linéaire (2000)

  • Volume: 17, Issue: 2, page 247-276
  • ISSN: 0294-1449

How to cite

top

Metzger, Roger J.. "Sinai-Ruelle-Bowen measures for contracting Lorenz maps and flows." Annales de l'I.H.P. Analyse non linéaire 17.2 (2000): 247-276. <http://eudml.org/doc/78493>.

@article{Metzger2000,
author = {Metzger, Roger J.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {ergodic absolutely continuous measure; SRB measure; contracting Lorenz map},
language = {eng},
number = {2},
pages = {247-276},
publisher = {Gauthier-Villars},
title = {Sinai-Ruelle-Bowen measures for contracting Lorenz maps and flows},
url = {http://eudml.org/doc/78493},
volume = {17},
year = {2000},
}

TY - JOUR
AU - Metzger, Roger J.
TI - Sinai-Ruelle-Bowen measures for contracting Lorenz maps and flows
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2000
PB - Gauthier-Villars
VL - 17
IS - 2
SP - 247
EP - 276
LA - eng
KW - ergodic absolutely continuous measure; SRB measure; contracting Lorenz map
UR - http://eudml.org/doc/78493
ER -

References

top
  1. [1] Bowen R., Ruelle D., The ergodic theory of Axiom A flows, Inv. Math.29 (1975) 181-202. Zbl0311.58010MR380889
  2. [2] Baladi V., Viana M., Strong stochastic stability and rate of mixing for unimodal maps, Ann. Scient. E.N.S.29 (4) (1996) 483-517. Zbl0868.58051MR1386223
  3. [3] Guckenheimer J., Williams R.F., Structural stability of Lorenz attractors, Publ. Math. IHES50 (1979) 307-320. Zbl0436.58018MR556582
  4. [4] Katok A., Kifer Y., Random perturbations of transformations of an interval, J. de Analyse Math.47 (1986) 193-237. Zbl0616.60064MR874051
  5. [5] Kifer Y., Ergodic Theory of Random Perturbations, Birkhäuser, Boston, 1986. Zbl0604.28014MR884892
  6. [6] Kifer Y., Random Perturbations of Dynamical Systems, Birkhäuser, Boston, 1988. Zbl0659.58003MR1015933
  7. [7] Ledrappier F., Some properties of absolutely continuos invariant measures on interval, Ergodic Theory Dynamical Systems1 (1981) 77-93. Zbl0487.28015MR627788
  8. [8] Lorenz E.N., Deterministic non periodic flow, J. Atmosph. Sci.20 (1963) 130-141. 
  9. [9] Palis J., A global view of dynamics and a conjecture on the denseness of finitude of attractors, Asterisque (1998). Zbl1044.37014MR1755446
  10. [10] Robinson C., Transitivity and invariant measures for the geometric model of the Lorenz attractor, Ergodic Theory Dynamical Systems4 (1984) 605-611. Zbl0558.28011MR779716
  11. [11] Rovella A., The dynamics of perturbations of the contracting Lorenz attractor, Bull. Brazil. Math. Soc.24 (1993) 233-259. Zbl0797.58051MR1254985
  12. [12] Ruelle D., A measure associated with Axiom A attractors, Amer. J. Math.98 (1976) 619-654. Zbl0355.58010MR415683
  13. [13] Sinai Ya., Gibbs measure in ergodic theory, Russian Math. Surveys27 (1972) 21- 79. Zbl0255.28016MR399421
  14. [14] Viana M., Stochastic Dynamics of Deterministic Systems, 21° Colóquio Brasileiro de Matemática, IMPA, 1997. 
  15. [15] Viana M., Dynamics: a probabilistic and geometric perspective, Doc. Math. J. (Extra Volume ICM) (1998). Zbl0911.58013MR1648047
  16. [16] Young L.-S., Decay of correlations for certain quadratic maps, Comm. Math. Phys.146 (1992) 123-138. Zbl0760.58030MR1163671

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.