Structural stability of Lorenz attractors

John Guckenheimer; Robert F. Williams

Publications Mathématiques de l'IHÉS (1979)

  • Volume: 50, page 59-72
  • ISSN: 0073-8301

How to cite

top

Guckenheimer, John, and Williams, Robert F.. "Structural stability of Lorenz attractors." Publications Mathématiques de l'IHÉS 50 (1979): 59-72. <http://eudml.org/doc/103965>.

@article{Guckenheimer1979,
author = {Guckenheimer, John, Williams, Robert F.},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {kneading sequence; the geometric Lorenz attractor is structurally stable of codimension 2},
language = {eng},
pages = {59-72},
publisher = {Institut des Hautes Études Scientifiques},
title = {Structural stability of Lorenz attractors},
url = {http://eudml.org/doc/103965},
volume = {50},
year = {1979},
}

TY - JOUR
AU - Guckenheimer, John
AU - Williams, Robert F.
TI - Structural stability of Lorenz attractors
JO - Publications Mathématiques de l'IHÉS
PY - 1979
PB - Institut des Hautes Études Scientifiques
VL - 50
SP - 59
EP - 72
LA - eng
KW - kneading sequence; the geometric Lorenz attractor is structurally stable of codimension 2
UR - http://eudml.org/doc/103965
ER -

References

top
  1. [1] J. GUCKENHEIMER, A Strange, Strange Attractor, in The Hopf Bifurcation Theorem and its Applications, ed. by J. E. MARSDEN and M. MCCRACKEN, Springer-Verlag (1976), 368-381. 
  2. [2] J. GUCKENHEIMER, On Bifurcations of Maps of the Interval, Inv. Math., to appear. Zbl0354.58013
  3. [3] M. HIRSCH, C. PUGH, Stable Manifolds and Hyperbolic Sets, Proceedings of Symposia in Pure Mathematics XIV, Am. Math. Soc. (1970), 133-163. Zbl0215.53001MR42 #6872
  4. [4] M. HIRSCH, C. PUGH, M. SHUB, Invariant Manifolds, Springer Lecture Notes in Math., 583 (1977). Zbl0355.58009MR58 #18595
  5. [5] E. LORENZ, Deterministic Nonperiodic Flow, Journal of Atmospheric Sciences, 20 (1963), 130-141. 
  6. [6] J. PALIS, S. SMALE, Structural Stability Theorems, Proceedings of Symposia in Pure Mathematics XIV, Am. Math. Soc., 1970, 223-231. Zbl0214.50702MR42 #2505
  7. [7] W. PARRY, Symbolic dynamics and transformations of the unit interval, Trans. Amer. Math. Soc., 122 (1966), 368-378. Zbl0146.18604MR33 #5846
  8. [8] C. L. SIEGEL, J. MOSER, Lectures on Celestial Mechanics, Springer-Verlag, 1971. Zbl0312.70017MR58 #19464
  9. [9] S. SMALE, Differential Dynamical Systems, Bull. Am. Math. Soc., 73 (1967), 747-817. Zbl0202.55202MR37 #3598
  10. [10] F. TAKENS, Partially Hyperbolic Fixed Points, Topology, 10 (1971), 133-147. Zbl0214.22901MR46 #6399
  11. [11] R. F. WILLIAMS, Expanding Attractors, Publ. I.H.E.S., no. 43 (1974), 196-203. Zbl0279.58013MR50 #1289
  12. [12] R. F. WILLIAMS, The Structure of Lorenz Attractors, Preprint. Zbl0484.58021

Citations in EuDML Documents

top
  1. Rafael Labarca, Carlos Gustavo Moreira, Essential dynamics for Lorenz maps on the real line and the lexicographical world
  2. C. A. Morales, Lorenz attractor through saddle-node bifurcations
  3. C. A Morales, Poincaré-Hopf index and partial hyperbolicity
  4. Rodrigo Bamon, Rafael Labarca, Ricardo Mañé, Maria-José Pacífico, The explosion of singular cycles
  5. Stephano Luzzatto, Warwick Tucker, Non-uniformly expanding dynamics in maps with singularities and criticalities
  6. Roger J. Metzger, Sinai-Ruelle-Bowen measures for contracting Lorenz maps and flows
  7. Aubin Arroyo, Federico Rodriguez Hertz, Homoclinic bifurcations and uniform hyperbolicity for three-dimensional flows
  8. Lluis Alsedà, Antonio Falcó, On the topological dynamics and phase-locking renormalization of Lorenz-like maps
  9. C. A. Morales, E. R. Pujals, Singular strange attractors on the boundary of Morse-Smale systems
  10. J. Palis, A global perspective for non-conservative dynamics

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.