A logarithmic Gauss curvature flow and the Minkowski problem
Annales de l'I.H.P. Analyse non linéaire (2000)
- Volume: 17, Issue: 6, page 733-751
- ISSN: 0294-1449
Access Full Article
topHow to cite
topChou, Kai-Seng, and Wang, Xu-Jia. "A logarithmic Gauss curvature flow and the Minkowski problem." Annales de l'I.H.P. Analyse non linéaire 17.6 (2000): 733-751. <http://eudml.org/doc/78507>.
@article{Chou2000,
author = {Chou, Kai-Seng, Wang, Xu-Jia},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {parabolic Monge-Ampr̀e equation; Gauss curvature; Minkowski problem; Asymptotic behavior},
language = {eng},
number = {6},
pages = {733-751},
publisher = {Gauthier-Villars},
title = {A logarithmic Gauss curvature flow and the Minkowski problem},
url = {http://eudml.org/doc/78507},
volume = {17},
year = {2000},
}
TY - JOUR
AU - Chou, Kai-Seng
AU - Wang, Xu-Jia
TI - A logarithmic Gauss curvature flow and the Minkowski problem
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2000
PB - Gauthier-Villars
VL - 17
IS - 6
SP - 733
EP - 751
LA - eng
KW - parabolic Monge-Ampr̀e equation; Gauss curvature; Minkowski problem; Asymptotic behavior
UR - http://eudml.org/doc/78507
ER -
References
top- [1] Andrews B., Contraction of convex hypersurfaces by their affine normal, J. Differential Geom.43 (1996) 207-229. Zbl0858.53005MR1424425
- [2] Andrews B., Evolving convex curves, Calc. Var. PDE1 (1998) 315-371. Zbl0931.53030MR1660843
- [3] Cheng S.Y., Yau S.T., On the regularity of the solution of the n-dimensional Minkowski problem, Comm. Pure Appl. Math.29 (1976) 495-516. Zbl0363.53030MR423267
- [4] Chou K. ( Tso, K.), Deforming a hypersurface by its Gauss-Kronecker curvature, Comm. Pure Appl. Math38 (1985) 867-882. Zbl0612.53005MR812353
- [5] Chou K. ( Tso, K.), Convex hypersurfaces with prescribed Gauss-Kronecker curvature, J. Differential Geom.34 (1991) 389-410. Zbl0723.53041MR1131436
- [6] Chou K., Zhu X., Anisotropic curvature flows for plane curves, Duke Math. J.97 (1999) 579-619. Zbl0946.53033MR1682990
- [7] Chow B., Deforming convex hypersurfaces by the n-th root of the Gaussian curvature, J. Differential Geom.22 (1985) 117-138. Zbl0589.53005MR826427
- [8] Firey W., Shapes of worn stones, Mathematica21 (1974) 1-11. Zbl0311.52003MR362045
- [9] Gage M.E., Li Y., Evolving plane curves by curvature in relative geometries II, Duke Math. J.75 (1994) 79-98. Zbl0811.53033MR1284816
- [10] Gerhardt C., Flow of non convex hypersurfaces into spheres, J. Differential Geom.32 (1990) 299-314. Zbl0708.53045
- [11] Krylov N.V., Nonlinear Elliptic and Parabolic Equations of the Second Order, D. Reidel, 1987. Zbl0619.35004MR901759
- [12] Lewy H., On differential geometry in the large, I (Minkowski's problem), Trans. Amer. Math. Soc.43 (1938) 258-270. Zbl0018.17403MR1501942
- [13] Minkowski H., Allgemeine Lehrsätze über die konvexen Polyeder, Nachr. Ges. Wiss. Göttingen (1897) 198-219. Zbl28.0427.01JFM28.0427.01
- [14] Minkowski H., Volumen and Oberfläche, Math. Ann.57 (1903) 447-495. MR1511220JFM34.0649.01
- [15] Miranda C., Su un problema di Minkowski, Rend. Sem. Mat. Roma3 (1939) 96- 108. Zbl0021.35701MR518
- [16] Nirenberg L., The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Appl. Math.6 (1953) 337-394. Zbl0051.12402MR58265
- [17] Pogorelov A.V., The Multidimensional Minkowski Problem, J. Wiley, New York, 1978. Zbl0387.53023
- [18] Urbas J.I.E., On the expansion of convex hypersurfaces by symmetric functions of their principal radii of curvature, J. Differential Geom.33 (1991) 91-125. Zbl0746.53006MR1085136
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.