Neumann and second boundary value problems for hessian and Gauß curvature flows
Oliver C Schnürer; Knut Smoczyk
Annales de l'I.H.P. Analyse non linéaire (2003)
- Volume: 20, Issue: 6, page 1043-1073
- ISSN: 0294-1449
Access Full Article
topHow to cite
topSchnürer, Oliver C, and Smoczyk, Knut. "Neumann and second boundary value problems for hessian and Gauß curvature flows." Annales de l'I.H.P. Analyse non linéaire 20.6 (2003): 1043-1073. <http://eudml.org/doc/78602>.
@article{Schnürer2003,
author = {Schnürer, Oliver C, Smoczyk, Knut},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Hessian and Gauss curvature flows; Neumann boundary condition; second boundary condition; Hessian flows; long time existence; convergence},
language = {eng},
number = {6},
pages = {1043-1073},
publisher = {Elsevier},
title = {Neumann and second boundary value problems for hessian and Gauß curvature flows},
url = {http://eudml.org/doc/78602},
volume = {20},
year = {2003},
}
TY - JOUR
AU - Schnürer, Oliver C
AU - Smoczyk, Knut
TI - Neumann and second boundary value problems for hessian and Gauß curvature flows
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 6
SP - 1043
EP - 1073
LA - eng
KW - Hessian and Gauss curvature flows; Neumann boundary condition; second boundary condition; Hessian flows; long time existence; convergence
UR - http://eudml.org/doc/78602
ER -
References
top- [1] Andrews B, Gauß curvature flow, The shape of the rolling stones, Invent. Math.138 (1999) 151-161. Zbl0936.35080MR1714339
- [2] Caffarelli L, Nirenberg L, Spruck J, Nonlinear second-order elliptic equations. V. The Dirichlet problem for Weingarten hypersurfaces, Comm. Pure Appl. Math.41 (1988) 47-70. Zbl0672.35028MR917124
- [3] Chou K.-S, Wang X.-J, A logarithmic Gauß curvature flow and the Minkowski problem, Ann. Inst. H. Poincaré Analyse Non Linéaire17 (6) (2000) 733-751. Zbl1071.53534MR1804653
- [4] Chow B, Deforming convex hypersurfaces by the nth root of the Gaussian curvature, J. Differential Geom.22 (1) (1985) 117-138. Zbl0589.53005MR826427
- [5] Daskalopoulos P, Hamilton R, The free boundary in the Gauß curvature flow with flat sides, J. Reine Angew. Math.510 (1999) 187-227. Zbl0931.53031MR1696096
- [6] Firey W, Shapes of worn stones, Mathematica21 (1974) 1-11. Zbl0311.52003MR362045
- [7] C. Gerhardt, Existenz für kleine Zeiten bei Neumann Randbedingungen, Lecture Notes.
- [8] Gerhardt C, Hypersurfaces of prescribed curvature in Lorentzian manifolds, Indiana Univ. Math. J.49 (2000) 1125-1153. Zbl1034.53064MR1803223
- [9] Gerhardt C, Hypersurfaces of prescribed Weingarten curvature, Math. Z.224 (1997) 167-194. Zbl0871.53045MR1431191
- [10] Gilbarg D, Trudinger N.S, Elliptic Partial Differential Equations of Second Order, Grundlehren Math. Wiss., 224, Springer-Verlag, Berlin, 1983, xiii+513 pp. Zbl0562.35001MR737190
- [11] Ivochkina N.M, Ladyženskaja O.A, Estimation of the second derivatives on the boundary for surfaces evolving under the action of their principal curvatures, Algebra i Analiz9 (1997) 30-50, (in Russian). Translation in , St. Petersburg Math. J.9 (1998) 199-217. Zbl0893.35053MR1468545
- [12] Ladyženskaja O.A, Solonnikov V.A, Ural'zeva N.N, Linear and Quasilinear Equations of Parabolic Type, (in Russian). Translated from the Russian by S. Smith , Transl. Math. Monographs, 23, American Mathematical Society, Providence, RI, 1967, xi+648 pp. Zbl0174.15403MR241822
- [13] Lieberman G.M, Second Order Parabolic Differential Equations, World Scientific, River Edge, NJ, 1996, xii+439 pp. Zbl0884.35001MR1465184
- [14] Lions P.-L, Trudinger N.S, Urbas J.I.E, The Neumann problem for equations of Monge–Ampère type, Comm. Pure Appl. Math.39 (1986) 539-563. Zbl0604.35027MR840340
- [15] Schnürer O.C, The Dirichlet problem for Weingarten hypersurfaces in Lorentz manifolds, Math. Z.242 (2002) 159-181. Zbl1042.53026MR1985454
- [16] Urbas J, Weingarten hypersurfaces with prescribed gradient image, Math. Z.240 (2002) 53-82. Zbl1130.35341MR1906707
- [17] Urbas J, The second boundary value problem for a class of Hessian equations, Comm. Partial Differential Equations26 (2001) 859-882. Zbl1194.35158MR1843287
- [18] Urbas J, Oblique boundary value problems for equations of Monge–Ampère type, Calc. Var. Partial Differential Equations7 (1998) 19-39. Zbl0912.35068MR1624426
- [19] Urbas J, On the second boundary value problem for equations of Monge–Ampère type, J. Reine Angew. Math.487 (1997) 115-124. Zbl0880.35031MR1454261
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.