Neumann and second boundary value problems for hessian and Gauß curvature flows

Oliver C Schnürer; Knut Smoczyk

Annales de l'I.H.P. Analyse non linéaire (2003)

  • Volume: 20, Issue: 6, page 1043-1073
  • ISSN: 0294-1449

How to cite

top

Schnürer, Oliver C, and Smoczyk, Knut. "Neumann and second boundary value problems for hessian and Gauß curvature flows." Annales de l'I.H.P. Analyse non linéaire 20.6 (2003): 1043-1073. <http://eudml.org/doc/78602>.

@article{Schnürer2003,
author = {Schnürer, Oliver C, Smoczyk, Knut},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Hessian and Gauss curvature flows; Neumann boundary condition; second boundary condition; Hessian flows; long time existence; convergence},
language = {eng},
number = {6},
pages = {1043-1073},
publisher = {Elsevier},
title = {Neumann and second boundary value problems for hessian and Gauß curvature flows},
url = {http://eudml.org/doc/78602},
volume = {20},
year = {2003},
}

TY - JOUR
AU - Schnürer, Oliver C
AU - Smoczyk, Knut
TI - Neumann and second boundary value problems for hessian and Gauß curvature flows
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 6
SP - 1043
EP - 1073
LA - eng
KW - Hessian and Gauss curvature flows; Neumann boundary condition; second boundary condition; Hessian flows; long time existence; convergence
UR - http://eudml.org/doc/78602
ER -

References

top
  1. [1] Andrews B, Gauß curvature flow, The shape of the rolling stones, Invent. Math.138 (1999) 151-161. Zbl0936.35080MR1714339
  2. [2] Caffarelli L, Nirenberg L, Spruck J, Nonlinear second-order elliptic equations. V. The Dirichlet problem for Weingarten hypersurfaces, Comm. Pure Appl. Math.41 (1988) 47-70. Zbl0672.35028MR917124
  3. [3] Chou K.-S, Wang X.-J, A logarithmic Gauß curvature flow and the Minkowski problem, Ann. Inst. H. Poincaré Analyse Non Linéaire17 (6) (2000) 733-751. Zbl1071.53534MR1804653
  4. [4] Chow B, Deforming convex hypersurfaces by the nth root of the Gaussian curvature, J. Differential Geom.22 (1) (1985) 117-138. Zbl0589.53005MR826427
  5. [5] Daskalopoulos P, Hamilton R, The free boundary in the Gauß curvature flow with flat sides, J. Reine Angew. Math.510 (1999) 187-227. Zbl0931.53031MR1696096
  6. [6] Firey W, Shapes of worn stones, Mathematica21 (1974) 1-11. Zbl0311.52003MR362045
  7. [7] C. Gerhardt, Existenz für kleine Zeiten bei Neumann Randbedingungen, Lecture Notes. 
  8. [8] Gerhardt C, Hypersurfaces of prescribed curvature in Lorentzian manifolds, Indiana Univ. Math. J.49 (2000) 1125-1153. Zbl1034.53064MR1803223
  9. [9] Gerhardt C, Hypersurfaces of prescribed Weingarten curvature, Math. Z.224 (1997) 167-194. Zbl0871.53045MR1431191
  10. [10] Gilbarg D, Trudinger N.S, Elliptic Partial Differential Equations of Second Order, Grundlehren Math. Wiss., 224, Springer-Verlag, Berlin, 1983, xiii+513 pp. Zbl0562.35001MR737190
  11. [11] Ivochkina N.M, Ladyženskaja O.A, Estimation of the second derivatives on the boundary for surfaces evolving under the action of their principal curvatures, Algebra i Analiz9 (1997) 30-50, (in Russian). Translation in , St. Petersburg Math. J.9 (1998) 199-217. Zbl0893.35053MR1468545
  12. [12] Ladyženskaja O.A, Solonnikov V.A, Ural'zeva N.N, Linear and Quasilinear Equations of Parabolic Type, (in Russian). Translated from the Russian by S. Smith , Transl. Math. Monographs, 23, American Mathematical Society, Providence, RI, 1967, xi+648 pp. Zbl0174.15403MR241822
  13. [13] Lieberman G.M, Second Order Parabolic Differential Equations, World Scientific, River Edge, NJ, 1996, xii+439 pp. Zbl0884.35001MR1465184
  14. [14] Lions P.-L, Trudinger N.S, Urbas J.I.E, The Neumann problem for equations of Monge–Ampère type, Comm. Pure Appl. Math.39 (1986) 539-563. Zbl0604.35027MR840340
  15. [15] Schnürer O.C, The Dirichlet problem for Weingarten hypersurfaces in Lorentz manifolds, Math. Z.242 (2002) 159-181. Zbl1042.53026MR1985454
  16. [16] Urbas J, Weingarten hypersurfaces with prescribed gradient image, Math. Z.240 (2002) 53-82. Zbl1130.35341MR1906707
  17. [17] Urbas J, The second boundary value problem for a class of Hessian equations, Comm. Partial Differential Equations26 (2001) 859-882. Zbl1194.35158MR1843287
  18. [18] Urbas J, Oblique boundary value problems for equations of Monge–Ampère type, Calc. Var. Partial Differential Equations7 (1998) 19-39. Zbl0912.35068MR1624426
  19. [19] Urbas J, On the second boundary value problem for equations of Monge–Ampère type, J. Reine Angew. Math.487 (1997) 115-124. Zbl0880.35031MR1454261

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.