An example of non-convex minimization and an application to Newton's problem of the body of least resistance

T. Lachand-Robert; M. A. Peletier

Annales de l'I.H.P. Analyse non linéaire (2001)

  • Volume: 18, Issue: 2, page 179-198
  • ISSN: 0294-1449

How to cite

top

Lachand-Robert, T., and Peletier, M. A.. "An example of non-convex minimization and an application to Newton's problem of the body of least resistance." Annales de l'I.H.P. Analyse non linéaire 18.2 (2001): 179-198. <http://eudml.org/doc/78517>.

@article{Lachand2001,
author = {Lachand-Robert, T., Peletier, M. A.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {non-convex minimization; body of minimal resistance},
language = {eng},
number = {2},
pages = {179-198},
publisher = {Elsevier},
title = {An example of non-convex minimization and an application to Newton's problem of the body of least resistance},
url = {http://eudml.org/doc/78517},
volume = {18},
year = {2001},
}

TY - JOUR
AU - Lachand-Robert, T.
AU - Peletier, M. A.
TI - An example of non-convex minimization and an application to Newton's problem of the body of least resistance
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2001
PB - Elsevier
VL - 18
IS - 2
SP - 179
EP - 198
LA - eng
KW - non-convex minimization; body of minimal resistance
UR - http://eudml.org/doc/78517
ER -

References

top
  1. [1] Brock F., Ferone V., Kawohl B., A symmetry problem in the calculus of variations, Calc. Var. Partial Differential Equations4 (1996) 593-599. Zbl0856.49018MR1416001
  2. [2] Buttazzo G., Ferone V., Kawohl B., Minimum problems over sets of concave functions and related questions, Math. Nachrichten173 (1993) 71-89. Zbl0835.49001MR1336954
  3. [3] Evans L.C., Gariepy R.F., Measure Theory and Fine Properties of Functions, Studies in Applied Mathematics, CRC Press, 1992. Zbl0804.28001MR1158660
  4. [4] Goldstine H.H., A History of the Calculus of Variations from the 17th through the 19th Century, Springer-Verlag, Heidelberg, 1980. Zbl0452.49002MR601774
  5. [5] Guasoni P., Problemi di ottimizzazione di forma su classi di insiemi convessi, Tesi di Laurea, Pisa, 1996. 
  6. [6] Benoist J., Hiriart-Urruty J.B., What is the subdifferential of the closed convex hull of a function?, SIAM J. Math. Anal.27 (6) (1996) 1661-1679. Zbl0876.49018MR1416513
  7. [7] Lachand-Robert T., Peletier M.A., Extremal points of a functional on the set of convex functions, Proc. Amer. Math. Soc.127 (1999) 1723-1727. Zbl0921.49018MR1646197
  8. [8] Lachand-Robert T., Peletier M.A., Newton's problem of the body of minimal resistance in the class of convex developable functions, in preparation. Zbl1048.49011
  9. [9] Newton I., Philosophiae Naturalis Principia Mathematica, 1686. Zbl0050.00201
  10. [10] Reed M., Simon B., Methods of Mathematical Physics, Vol. I, Academic Press, 1980. MR751959
  11. [11] Rockafellar R.T., Convex Analysis, Princeton University Press, 1970. Zbl0193.18401MR274683
  12. [12] Schneider R., Convex Bodies: The Brunn–Minkowski Theory, Cambridge University Press, 1993. Zbl0798.52001
  13. [13] Zamfirescu T., Baire category in convexity, Atti Sem. Mat. Fis. Univ. Modena39 (1991) 139-164. Zbl0780.52003MR1111764
  14. [14] Zamfirescu T., Nearly all convex bodies are smooth and strictly convex, Monatsh. Math.103 (1987) 57-62. Zbl0607.52002MR875352

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.