An example of non-convex minimization and an application to Newton's problem of the body of least resistance
T. Lachand-Robert; M. A. Peletier
Annales de l'I.H.P. Analyse non linéaire (2001)
- Volume: 18, Issue: 2, page 179-198
- ISSN: 0294-1449
Access Full Article
topHow to cite
topLachand-Robert, T., and Peletier, M. A.. "An example of non-convex minimization and an application to Newton's problem of the body of least resistance." Annales de l'I.H.P. Analyse non linéaire 18.2 (2001): 179-198. <http://eudml.org/doc/78517>.
@article{Lachand2001,
author = {Lachand-Robert, T., Peletier, M. A.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {non-convex minimization; body of minimal resistance},
language = {eng},
number = {2},
pages = {179-198},
publisher = {Elsevier},
title = {An example of non-convex minimization and an application to Newton's problem of the body of least resistance},
url = {http://eudml.org/doc/78517},
volume = {18},
year = {2001},
}
TY - JOUR
AU - Lachand-Robert, T.
AU - Peletier, M. A.
TI - An example of non-convex minimization and an application to Newton's problem of the body of least resistance
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2001
PB - Elsevier
VL - 18
IS - 2
SP - 179
EP - 198
LA - eng
KW - non-convex minimization; body of minimal resistance
UR - http://eudml.org/doc/78517
ER -
References
top- [1] Brock F., Ferone V., Kawohl B., A symmetry problem in the calculus of variations, Calc. Var. Partial Differential Equations4 (1996) 593-599. Zbl0856.49018MR1416001
- [2] Buttazzo G., Ferone V., Kawohl B., Minimum problems over sets of concave functions and related questions, Math. Nachrichten173 (1993) 71-89. Zbl0835.49001MR1336954
- [3] Evans L.C., Gariepy R.F., Measure Theory and Fine Properties of Functions, Studies in Applied Mathematics, CRC Press, 1992. Zbl0804.28001MR1158660
- [4] Goldstine H.H., A History of the Calculus of Variations from the 17th through the 19th Century, Springer-Verlag, Heidelberg, 1980. Zbl0452.49002MR601774
- [5] Guasoni P., Problemi di ottimizzazione di forma su classi di insiemi convessi, Tesi di Laurea, Pisa, 1996.
- [6] Benoist J., Hiriart-Urruty J.B., What is the subdifferential of the closed convex hull of a function?, SIAM J. Math. Anal.27 (6) (1996) 1661-1679. Zbl0876.49018MR1416513
- [7] Lachand-Robert T., Peletier M.A., Extremal points of a functional on the set of convex functions, Proc. Amer. Math. Soc.127 (1999) 1723-1727. Zbl0921.49018MR1646197
- [8] Lachand-Robert T., Peletier M.A., Newton's problem of the body of minimal resistance in the class of convex developable functions, in preparation. Zbl1048.49011
- [9] Newton I., Philosophiae Naturalis Principia Mathematica, 1686. Zbl0050.00201
- [10] Reed M., Simon B., Methods of Mathematical Physics, Vol. I, Academic Press, 1980. MR751959
- [11] Rockafellar R.T., Convex Analysis, Princeton University Press, 1970. Zbl0193.18401MR274683
- [12] Schneider R., Convex Bodies: The Brunn–Minkowski Theory, Cambridge University Press, 1993. Zbl0798.52001
- [13] Zamfirescu T., Baire category in convexity, Atti Sem. Mat. Fis. Univ. Modena39 (1991) 139-164. Zbl0780.52003MR1111764
- [14] Zamfirescu T., Nearly all convex bodies are smooth and strictly convex, Monatsh. Math.103 (1987) 57-62. Zbl0607.52002MR875352
Citations in EuDML Documents
top- Alexander Plakhov, Alena Aleksenko, The problem of the body of revolution of minimal resistance
- Dorin Bucur, Ilaria Fragalà, Jimmy Lamboley, Optimal convex shapes for concave functionals
- Dorin Bucur, Ilaria Fragalà, Jimmy Lamboley, Optimal convex shapes for concave functionals
- Dorin Bucur, Ilaria Fragalà, Jimmy Lamboley, Optimal convex shapes for concave functionals
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.