Optimal convex shapes for concave functionals
Dorin Bucur; Ilaria Fragalà; Jimmy Lamboley
ESAIM: Control, Optimisation and Calculus of Variations (2012)
- Volume: 18, Issue: 3, page 693-711
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topBucur, Dorin, Fragalà, Ilaria, and Lamboley, Jimmy. "Optimal convex shapes for concave functionals." ESAIM: Control, Optimisation and Calculus of Variations 18.3 (2012): 693-711. <http://eudml.org/doc/277816>.
@article{Bucur2012,
abstract = {Motivated by a long-standing conjecture of Pólya and Szegö about the Newtonian capacity
of convex bodies, we discuss the role of concavity inequalities in shape optimization, and
we provide several counterexamples to the Blaschke-concavity of variational functionals,
including capacity. We then introduce a new algebraic structure on convex bodies, which
allows to obtain global concavity and indecomposability results, and we discuss their
application to isoperimetric-like inequalities. As a byproduct of this approach we also
obtain a quantitative version of the Kneser-Süss inequality. Finally, for a large class of
functionals involving Dirichlet energies and the surface measure, we perform a local
analysis of strictly convex portions of the boundary via second order
shape derivatives. This allows in particular to exclude the presence of smooth regions
with positive Gauss curvature in an optimal shape for Pólya-Szegö problem. },
author = {Bucur, Dorin, Fragalà, Ilaria, Lamboley, Jimmy},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Convex bodies; concavity inequalities; optimization; shape derivatives; capacity; convex bodies},
language = {eng},
month = {11},
number = {3},
pages = {693-711},
publisher = {EDP Sciences},
title = {Optimal convex shapes for concave functionals},
url = {http://eudml.org/doc/277816},
volume = {18},
year = {2012},
}
TY - JOUR
AU - Bucur, Dorin
AU - Fragalà, Ilaria
AU - Lamboley, Jimmy
TI - Optimal convex shapes for concave functionals
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2012/11//
PB - EDP Sciences
VL - 18
IS - 3
SP - 693
EP - 711
AB - Motivated by a long-standing conjecture of Pólya and Szegö about the Newtonian capacity
of convex bodies, we discuss the role of concavity inequalities in shape optimization, and
we provide several counterexamples to the Blaschke-concavity of variational functionals,
including capacity. We then introduce a new algebraic structure on convex bodies, which
allows to obtain global concavity and indecomposability results, and we discuss their
application to isoperimetric-like inequalities. As a byproduct of this approach we also
obtain a quantitative version of the Kneser-Süss inequality. Finally, for a large class of
functionals involving Dirichlet energies and the surface measure, we perform a local
analysis of strictly convex portions of the boundary via second order
shape derivatives. This allows in particular to exclude the presence of smooth regions
with positive Gauss curvature in an optimal shape for Pólya-Szegö problem.
LA - eng
KW - Convex bodies; concavity inequalities; optimization; shape derivatives; capacity; convex bodies
UR - http://eudml.org/doc/277816
ER -
References
top- A.D. Alexandrov, Zur theorie der gemischten volumina von konvexen korpern III, Mat. Sb.3 (1938) 27–46.
- V. Alexandrov, N. Kopteva and S.S. Kutateladze, Blaschke addition and convex polyedra. preprint, arXiv:math/0502345 (2005).
- C. Bianchini and P. Salani, Concavity properties for elliptic free boundary problems. Nonlinear Anal.71 (2009) 4461–4470.
- C. Borell, Capacitary inequalities of the Brunn-Minkowki type. Math. Ann.263 (1983) 179–184.
- C. Borell, Greenian potentials and concavity. Math. Ann.272 (1985) 155–160.
- H. Brascamp and E. Lieb, On extension of the Brunn-Minkowski and Prékopa-Leindler inequality, including inequalities for log concave functions, and with an application to diffision equation. J. Funct. Anal.22 (1976) 366–389.
- F. Brock, V. Ferone and B. Kawohl, A Symmetry Problem in the Calculus of Variations, Calc. Var. Partial Differential Equations4 (1996) 593–599.
- E.M. Bronshtein, Extremal H-convex bodies. Sibirsk Mat. Zh.20 (1979) 412–415.
- D. Bucur, G. Buttazzo and A. Henrot, Minimization of λ2(Ω) with a perimeter constraint. Indiana Univ. Math. J.58 (2009) 2709–2728.
- L. Caffarelli, D. Jerison and E. Lieb, On the case of equality in the Brunn-Minkowski inequality for capacity. Adv. Math.117 (1996) 193–207.
- S. Campi and P. Gronchi, On volume product inequalities for convex sets. Proc. Amer. Math. Soc.134 (2006) 2393–2402.
- A. Colesanti, Brunn-Minkowski inequalities for variational functionals and related problems. Adv. Math.194 (2005) 105–140.
- A. Colesanti and P. Cuoghi, The Brunn-Minkowski inequality for the n-dimensional logarithmic capacity. Potential Anal.22 (2005) 289–304
- A. Colesanti and M. Fimiani, The Minkowski problem for the torsional rigidity. Indiana Univ. Math. J.59 (2010) 1013–1040.
- A. Colesanti and P. Salani, The Brunn-Minkowski inequality for p-capacity of convex bodies. Math. Ann.327 (2003) 459–479.
- G. Crasta and F. Gazzola, Some estimates of the minimizing properties of web functions, Calc. Var. Partial Differential Equations15 (2002) 45–66.
- G. Crasta, I. Fragalà and F. Gazzola, On a long-standing conjecture by Pólya-Szegö and related topics. Z. Angew. Math. Phys.56 (2005) 763–782.
- A. Figalli, F. Maggi and A. Pratelli, A refined Brunn-Minkowski inequality for convex sets. Ann. Inst. Henri Poincaré Anal. Non Linéaire26 (2009) 2511–2519.
- I. Fragalà, F. Gazzola and M. Pierre, On an isoperimetric inequality for capacity conjectured by Pólya and Szegö. J. Differ. Equ.250 (2011) 1500–1520.
- P. Freitas, Upper and lower bounds for the first Dirichlet eigenvalue of a triangle, Proc. Am. Math. Soc.134 (2006) 2083–2089.
- R. Gardner, The Brunn-Minkowski inequality. Bull. Am. Math. Soc. (N.S.)39 (2002) 355–405.
- R.J. Gardner and D. Hartenstine, Capacities, surface area, and radial sums, Adv. Math.221 (2009) 601–626.
- P.R. Goodey and R. Schneider, On the intermediate area functions of convex bodies. Math. Z.173 (1980) 185–194.
- E. Grinberg and G. Zhang, Convolutions, transforms, and convex bodies. Proc. London Math. Soc.78 (1999) 77–115.
- H. Hadwiger, Konkave Eikörperfunktionale. Monatsh. Math.59 (1955) 230–237.
- A. Henrot and M. Pierre, Variation et Optimisation de Formes : une analyse géométrique, Mathématiques et Applications48. Springer (2005).
- D. Jerison, A Minkowski problem for electrostatic capacity. Acta Math.176 (1996) 1–47.
- D. Jerison, The direct method in the calculus of variations for convex bodies. Adv. Math.122 (1996) 262–279.
- S.S. Kutateladze, One functional-analytical idea by Alexandrov in convex geometry. Vladikavkaz. Mat. Zh.4 (2002) 50–55.
- S.S. Kutateladze, Pareto optimality and isoperimetry. preprint, arXiv:0902.1157v1 (2009).
- T. Lachand-Robert and M.A. Peletier, An example of non-convex minimization and an application to Newton’s problem of the body of least resistance. Ann. Inst. Henri Poincaré18 (2001) 179–198.
- J. Lamboley and A. Novruzi, Polygons as optimal shapes with convexity constraint. SIAM J. Control Optim.48 (2009/10) 3003–3025.
- J. Lamboley, A. Novruzi and M. Pierre, Regularity and singularities of optimal convex shapes in the plane, preprint (2011).
- M. Lanza, de Cristoforis, Higher order differentiability properties of the composition and of the inversion operator. Indag. Math. N S5 (1994) 457–482.
- G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies27. Princeton University Press, Princeton, N.J. (1951).
- Ch. Pommerenke, Univalent functions. Vandenhoeck and Ruprecht, Göttingen (1975).
- P. Salani, A Brunn-Minkowski inequality for the Monge-Ampère eigenvalue. Adv. Math.194 (2005) 67–86.
- R. Schneider, Eine allgemeine Extremaleigenschaft der Kugel. Monatsh. Math.71 (1967) 231–237.
- R. Schneider, Convex bodies : the Brunn-Minkowski theory. Cambridge Univ. Press (1993).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.