Nonlinear monotone semigroups and viscosity solutions

Samuel Biton

Annales de l'I.H.P. Analyse non linéaire (2001)

  • Volume: 18, Issue: 3, page 383-402
  • ISSN: 0294-1449

How to cite

top

Biton, Samuel. "Nonlinear monotone semigroups and viscosity solutions." Annales de l'I.H.P. Analyse non linéaire 18.3 (2001): 383-402. <http://eudml.org/doc/78525>.

@article{Biton2001,
author = {Biton, Samuel},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {fully nonlinear, possibly degenerate, second-order parabolic},
language = {eng},
number = {3},
pages = {383-402},
publisher = {Elsevier},
title = {Nonlinear monotone semigroups and viscosity solutions},
url = {http://eudml.org/doc/78525},
volume = {18},
year = {2001},
}

TY - JOUR
AU - Biton, Samuel
TI - Nonlinear monotone semigroups and viscosity solutions
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2001
PB - Elsevier
VL - 18
IS - 3
SP - 383
EP - 402
LA - eng
KW - fully nonlinear, possibly degenerate, second-order parabolic
UR - http://eudml.org/doc/78525
ER -

References

top
  1. [1] Alvarez L, Guichard F, Lions P.L, Morel J.M, Axioms and Fundamental Equations of Image Processing, Arch. Rational Mech. Anal.123 (1993) 199-257. Zbl0788.68153MR1225209
  2. [2] Bardi M, Capuzzo-Dolcetta I, Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations, Birkhäuser, Boston, 1997. Zbl0890.49011
  3. [3] Barles G, Solutions de Viscosité des Équations de Hamilton–Jacobi, Collection “Mathématiques et Applications” of SMAI, No 17, Springer-Verlag, Paris, 1994. Zbl0819.35002
  4. [4] Beck A, Uniqueness of Flow Solutions of Differential Equations, Lecture Notes in Mathematics, 318, Springer-Verlag, Berlin, 1973. Zbl0261.34001MR409997
  5. [5] Crandall M.G, Lions P.-L, Viscosity solutions of Hamilton–Jacobi equations, Trans. Amer. Math. Soc.277 (1983) 1-42. Zbl0599.35024
  6. [6] Crandall M.G, Ishii H, Lions P.-L, User's guide to viscosity solutions of second order Partial differential equations, Bull. Amer. Soc.27 (1992) 1-67. Zbl0755.35015MR1118699
  7. [7] Fleming W.H, Soner H.M, Controlled Markov Processes and Viscosity Solutions, Applications of Mathematics, Springer-Verlag, New York, 1993. Zbl0773.60070MR1199811
  8. [8] Giga Y, Goto S, Ishii H, Sato M.-H, Comparison principle and convexity preserving properties for singular parabolic equations on unbounded domains, Indiana University Math. J.40 (2) (1991). Zbl0836.35009MR1119185
  9. [9] Ishii I, Uniqueness of unbounded viscosity solution of Hamilton–Jacobi equations, Indiana Univ. Math. J.33 (1984) 721-748. Zbl0551.49016
  10. [10] Ley O, Lower bound gradient estimates for first-order Hamilton–Jacobi equations and applications to the regularity of propagating fronts, Preprint, 1999. Zbl1015.35031
  11. [11] Lions P.-L, Generalized Solutions of Hamilton–Jacobi Equations, Research Notes in Mathematics, 69, Pitman, London, 1988. Zbl0497.35001
  12. [12] Lions P.-L, Some Properties of the Viscosity Semigroups of Hamilton–Jacobi Equations, Nonlinear Differential Equations and Applications, Pitman, London, 1982. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.