Elliptic equations with critical Sobolev exponents in dimension 3

Olivier Druet

Annales de l'I.H.P. Analyse non linéaire (2002)

  • Volume: 19, Issue: 2, page 125-142
  • ISSN: 0294-1449

How to cite

top

Druet, Olivier. "Elliptic equations with critical Sobolev exponents in dimension 3." Annales de l'I.H.P. Analyse non linéaire 19.2 (2002): 125-142. <http://eudml.org/doc/78541>.

@article{Druet2002,
author = {Druet, Olivier},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {minimizing solution},
language = {eng},
number = {2},
pages = {125-142},
publisher = {Elsevier},
title = {Elliptic equations with critical Sobolev exponents in dimension 3},
url = {http://eudml.org/doc/78541},
volume = {19},
year = {2002},
}

TY - JOUR
AU - Druet, Olivier
TI - Elliptic equations with critical Sobolev exponents in dimension 3
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2002
PB - Elsevier
VL - 19
IS - 2
SP - 125
EP - 142
LA - eng
KW - minimizing solution
UR - http://eudml.org/doc/78541
ER -

References

top
  1. [1] Atkinson F.V., Peletier L.A., Elliptic equations with nearly critical growth, J. Differential Equations70 (1987) 349-365. Zbl0657.35058MR915493
  2. [2] Aubin T., Problèmes isopérimétriques et espaces de Sobolev, J. Differential Geom.11 (1976) 573-598. Zbl0371.46011MR448404
  3. [3] Brézis H., Elliptic equations with limiting Sobolev exponents. The impact of topology, Comm. Pure Appl. Math.39 (1986) 17-39. Zbl0601.35043MR861481
  4. [4] Brézis H., Nirenberg L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math.36 (1983) 437-477. Zbl0541.35029MR709644
  5. [5] Brézis H., Peletier L.A., Asymptotics for elliptic equations involving critical Sobolev exponents, in: Modica L., Colombini F., Marino A., Spagnolo S. (Eds.), Partial Differential Equations and the Calculus of Variations, Birkhaüser, Basel, 1989. Zbl0685.35013MR1034005
  6. [6] Chang S.Y.A., Yang P.C., Compactness of isospectral conformal metrics in S3, Comment. Math. Helv.64 (1989) 363-374. Zbl0679.53038MR998854
  7. [7] Druet O., The best constants problem in Sobolev inequalities, Math. Annalen314 (1999) 327-346. Zbl0934.53028MR1697448
  8. [8] O. Druet, Optimal Sobolev inequalities and extremal functions, The three-dimensional case, Indiana University Mathematics Journal (to appear). Zbl1037.58012MR1896157
  9. [9] Druet O., Robert F., Asymptotic profile for the sub-extremals of the sharp Sobolev inequality on the sphere, Comm. PDE26 (5–6) (2001) 743-778. Zbl0998.58010MR1843283
  10. [10] Gidas B., Ni W., Nirenberg L., Symmetry of positive solutions of nonlinear elliptic equations in Rn, in: Nachbin L. (Ed.), Mathematical Analysis and Applications, Academic Press, 1981, pp. 370-401. Zbl0469.35052MR634248
  11. [11] Gilbarg D., Trüdinger N., Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1977. Zbl1042.35002MR473443
  12. [12] Han Z.C., Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. I.H.P., Analyse non-linéaire8 (2) (1991) 159-174. Zbl0729.35014MR1096602
  13. [13] Hebey E., Asymptotic behavior of positive solutions of quasilinear elliptic equations with critical Sobolev growth, J. Differential Integral Equations13 (2000) 1073-1080. Zbl0976.35022MR1775246
  14. [14] Hebey E., Vaugon M., The best constant problem in the Sobolev embedding theorem for complete Riemannian manifolds, Duke Math. J.79 (1995) 235-279. Zbl0839.53030MR1340298
  15. [15] Hebey E., Vaugon M., From best constants to critical functions, Math. Z.237 (2001) 737-767. Zbl0992.58016MR1854089
  16. [16] Li Y.Y., Prescribing scalar curvature on Sn and related problems, part I, J. Differential Equations120 (1995) 319-420. Zbl0827.53039MR1347349
  17. [17] Obata M., The conjectures on conformal transformations of Riemannian manifolds, J. Differential Geom.6 (1971) 247-258. Zbl0236.53042MR303464
  18. [18] Robert F., Asymptotic behaviour of a nonlinear elliptic equation with critical Sobolev exponent: the radial case, Adv. Differential Equations6 (7) (2001) 821-846. Zbl1087.35026MR1828998
  19. [19] Schoen R., Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom.20 (1984) 479-495. Zbl0576.53028MR788292
  20. [20] Schoen R., Zhang D., Prescribed scalar curvature on the n-sphere, Calc. Var. PDE4 (1996) 1-25. Zbl0843.53037MR1379191
  21. [21] Struwe M., A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z.187 (1984) 511-517. Zbl0535.35025MR760051
  22. [22] Talenti G., Best constants in Sobolev inequality, Ann. Math. Pura Appl.110 (1976) 353-372. Zbl0353.46018MR463908

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.