A refinement of the radial Pohozaev identity

Florin Catrina

Mathematica Bohemica (2010)

  • Volume: 135, Issue: 2, page 143-150
  • ISSN: 0862-7959

Abstract

top
In this article we produce a refined version of the classical Pohozaev identity in the radial setting. The refined identity is then compared to the original, and possible applications are discussed.

How to cite

top

Catrina, Florin. "A refinement of the radial Pohozaev identity." Mathematica Bohemica 135.2 (2010): 143-150. <http://eudml.org/doc/38118>.

@article{Catrina2010,
abstract = {In this article we produce a refined version of the classical Pohozaev identity in the radial setting. The refined identity is then compared to the original, and possible applications are discussed.},
author = {Catrina, Florin},
journal = {Mathematica Bohemica},
keywords = {Green's function; positive solutions; supercritical nonlinearity; Green's function; positive solution; supercritical nonlinearity},
language = {eng},
number = {2},
pages = {143-150},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A refinement of the radial Pohozaev identity},
url = {http://eudml.org/doc/38118},
volume = {135},
year = {2010},
}

TY - JOUR
AU - Catrina, Florin
TI - A refinement of the radial Pohozaev identity
JO - Mathematica Bohemica
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 135
IS - 2
SP - 143
EP - 150
AB - In this article we produce a refined version of the classical Pohozaev identity in the radial setting. The refined identity is then compared to the original, and possible applications are discussed.
LA - eng
KW - Green's function; positive solutions; supercritical nonlinearity; Green's function; positive solution; supercritical nonlinearity
UR - http://eudml.org/doc/38118
ER -

References

top
  1. Brezis, H., 10.1002/cpa.3160390704, Comm. Pure Appl. Math. 39 (1986), S17--S39. (1986) Zbl0601.35043MR0861481DOI10.1002/cpa.3160390704
  2. Brezis, H., Dupaigne, L., Tesei, A., 10.1007/s00029-005-0003-z, Selecta Math. 11 (2005), 1-7. (2005) Zbl1161.35383MR2179651DOI10.1007/s00029-005-0003-z
  3. Brezis, H., Nirenberg, L., 10.1002/cpa.3160360405, Comm. Pure Appl. Math. 36 (1983), 437-477. (1983) MR0709644DOI10.1002/cpa.3160360405
  4. Brezis, H., Peletier, L. A., 10.1016/j.crma.2004.07.010, C. R. Math. Acad. Sci. Paris 339 (2004), 391-394. (2004) MR2092750DOI10.1016/j.crma.2004.07.010
  5. Brezis, H., Willem, M., 10.1016/j.jfa.2007.11.022, J. Funct. Anal. 255 (2008), 2286-2298. (2008) Zbl1166.35021MR2473258DOI10.1016/j.jfa.2007.11.022
  6. Budd, C. J., Humphries, A. R., 10.1016/S0377-0427(02)00737-9, J. Comput. Appl. Math. 151 (2003), 59-84. (2003) Zbl1016.65082MR1950229DOI10.1016/S0377-0427(02)00737-9
  7. Catrina, F., 10.1090/S0002-9939-09-10031-X, Proc. Amer. Soc. 137 (2009), 3717-3724. (2009) Zbl1179.35142MR2529879DOI10.1090/S0002-9939-09-10031-X
  8. Catrina, F., Lavine, R., 10.1142/S0219199702000750, Commun. Contemp. Math. 4 (2002), 529-545. (2002) Zbl1013.35023MR1918758DOI10.1142/S0219199702000750
  9. Chou, K.-S., Geng, D., 10.1016/0362-546X(95)00048-Z, Nonlinear Anal., Theory Methods Appl. 12 (1996), 1965-1984. (1996) Zbl0855.35042MR1386127DOI10.1016/0362-546X(95)00048-Z
  10. Clement, Ph., Figueiredo, D. G. de, Mitidieri, E., 10.12775/TMNA.1996.006, Topol. Methods Nonlinear Anal. 7 (1996), 133-170. (1996) Zbl0939.35072MR1422009DOI10.12775/TMNA.1996.006
  11. Dávila, J., Pino, M. del, Musso, M., Wei, J., 10.1007/s00526-007-0154-1, Calc. Var. Partial Differential Equations 32 (2008), 453-480. (2008) MR2402919DOI10.1007/s00526-007-0154-1
  12. Druet, O., 10.1016/S0294-1449(02)00095-1, Ann. Inst. H. Poincaré Anal. Non Linéaire 19 (2002), 125-142. (2002) Zbl1011.35060MR1902741DOI10.1016/S0294-1449(02)00095-1
  13. Egnell, H., 10.1007/BF00256931, Arch. Rational Mech. Anal. 104 (1988), 27-56. (1988) Zbl0674.35033MR0956566DOI10.1007/BF00256931
  14. Egnell, H., 10.1007/BF00256932, Arch. Rational Mech. Anal. 104 (1988), 57-77. (1988) Zbl0675.35036MR0956567DOI10.1007/BF00256932
  15. Felmer, P. L., Quaas, A., 10.1016/j.jde.2004.01.001, J. Differ. Equations 199 (2004), 376-393. (2004) MR2047915DOI10.1016/j.jde.2004.01.001
  16. Ghoussoub, N., Yuan, C., 10.1090/S0002-9947-00-02560-5, Trans. Amer. Math. Soc. 352 (2000), 5703-5743. (2000) MR1695021DOI10.1090/S0002-9947-00-02560-5
  17. Gidas, B., Ni, W. M., Nirenberg, L., 10.1007/BF01221125, Comm. Math. Phys. 68 (1979), 209-243. (1979) Zbl0425.35020MR0544879DOI10.1007/BF01221125
  18. Grossi, M., 10.1016/j.jfa.2008.03.007, J. Funct. Anal. 254 (2008), 2995-3036. (2008) Zbl1154.35050MR2418617DOI10.1016/j.jfa.2008.03.007
  19. Grossi, M., Existence of radial solutions for an elliptic problem involving exponential nonlinearities, Discrete Contin. Dyn. Syst. 21 (2008), 221-232. (2008) Zbl1155.35042MR2379462
  20. Jacobsen, J., 10.12775/TMNA.1999.023, Topol. Methods Nonlinear Anal. 14 (1999), 81-130. (1999) Zbl0959.35066MR1758881DOI10.12775/TMNA.1999.023
  21. Passaseo, D., 10.1016/S0294-1449(16)30102-0, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996), 185-227. (1996) MR1378466DOI10.1016/S0294-1449(16)30102-0
  22. Pohozaev, S. I., On the eigenfunctions of the equation Δ u + λ f ( u ) = 0 , Russian Dokl. Akad. Nauk SSSR 165 (1965), 36-39. (1965) MR0192184
  23. Pucci, P., Serrin, J., Critical exponents and critical dimensions for polyharmonic operators, J. Math. Pures Appl. 69 (1990), 55-83. (1990) MR1054124
  24. Rey, O., 10.1016/0022-1236(90)90002-3, J. Funct. Anal. 89 (1990), 1-52. (1990) Zbl0786.35059MR1040954DOI10.1016/0022-1236(90)90002-3
  25. Schoen, R., 10.4310/jdg/1214439291, J. Differential Geom. 20 (1984), 479-495. (1984) Zbl0576.53028MR0788292DOI10.4310/jdg/1214439291

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.