Minimizers of the Lawrence–Doniach energy in the small-coupling limit : finite width samples in a parallel field
S. Alama; A. J. Berlinsky; L. Bronsard
Annales de l'I.H.P. Analyse non linéaire (2002)
- Volume: 19, Issue: 3, page 281-312
- ISSN: 0294-1449
Access Full Article
topHow to cite
topAlama, S., Berlinsky, A. J., and Bronsard, L.. "Minimizers of the Lawrence–Doniach energy in the small-coupling limit : finite width samples in a parallel field." Annales de l'I.H.P. Analyse non linéaire 19.3 (2002): 281-312. <http://eudml.org/doc/78546>.
@article{Alama2002,
author = {Alama, S., Berlinsky, A. J., Bronsard, L.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {rigorous analysis the energy minimizers; Lawrence-Doniach model; layered superconductors; degenerate perturbation theory},
language = {eng},
number = {3},
pages = {281-312},
publisher = {Elsevier},
title = {Minimizers of the Lawrence–Doniach energy in the small-coupling limit : finite width samples in a parallel field},
url = {http://eudml.org/doc/78546},
volume = {19},
year = {2002},
}
TY - JOUR
AU - Alama, S.
AU - Berlinsky, A. J.
AU - Bronsard, L.
TI - Minimizers of the Lawrence–Doniach energy in the small-coupling limit : finite width samples in a parallel field
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2002
PB - Elsevier
VL - 19
IS - 3
SP - 281
EP - 312
LA - eng
KW - rigorous analysis the energy minimizers; Lawrence-Doniach model; layered superconductors; degenerate perturbation theory
UR - http://eudml.org/doc/78546
ER -
References
top- [1] Alama S., Berlinsky A.J., Bronsard L., Periodic vortex lattices for the Lawrence–Doniach model of layered superconductors in a parallel field, preprint, 2000, available on the preprint archive http://xxx.lanl.gov. Zbl1006.82040MR1849651
- [2] Ambrosetti A., Badiale M., Homoclinics: Poincaré–Melnikov type results via a variational approach, Ann. Inst. H. Poincaré Anal. Non Linéaire15 (1998) 233-252. Zbl1004.37043MR1614571
- [3] Ambrosetti A., Coti-Zelati V., Ekeland I., Symmetry breaking in Hamiltonian systems, J. Differential Equations67 (1987) 165-184. Zbl0606.58043MR879691
- [4] Bahri A., Li Y., Rey O., On a variational problem with lack of compactness: the topological effect of the critical points at infinity, Calc. Var. Partial Differential Equations3 (1995) 67-93. Zbl0814.35032MR1384837
- [5] Bethuel F., Brezis H., Hélein F., Ginzburg–Landau Vortices, Birkhauser, Boston, 1994. Zbl0802.35142MR1269538
- [6] Bethuel F., Riviére T., Vortices for a variational problem related to superconductivity, Ann. Inst. H. Poincaré Anal. Non Linéaire12 (1995) 243-303. Zbl0842.35119MR1340265
- [7] Bulaevskii L., Magnetic properties of layered superconductors with weak interaction between the layers, Sov. Phys. JETP37 (1973) 1133-1136.
- [8] Bulaevskii L., Clem J., Vortex lattice of highly anisotropic layered superconductors in strong, parallel magnetic fields, Phys. Rev.B44 (1991) 10234-10238.
- [9] Chapman S., Du Q., Gunzburger M., On the Lawrence–Doniach and anisotropic Ginzburg–Landau models for layered superconductors, SIAM J. Appl. Math.55 (1995) 156-174. Zbl0819.35133MR1313011
- [10] Clem J., Coffey M., Viscous flux motion in a Josephson-coupled layer model of high-Tc superconductors, Phys. Rev.B42 (1990) 6209-6216.
- [11] Del Pino M., Felmer P., Local minimizers for the Ginzburg–Landau energy, Math. Z.225 (1997) 671-684. Zbl0943.35086MR1466408
- [12] Giorgi T., Phillips D., The breakdown of superconductivity due to strong fields for the Ginzburg–Landau model, SIAM J. Math. Anal.30 (1999) 341-359. Zbl0920.35058MR1664763
- [13] Grisvard P., Elliptic Problems in Nonsmooth Domains, Pitman Advanced Publishing Program, Boston, 1985. Zbl0695.35060MR775683
- [14] Gui C., Multipeak solutions for a semilinear Neumann problem, Duke Math. J.84 (1996) 739-769. Zbl0866.35039MR1408543
- [15] Iye Y., How anisotropic are the cuprate high Tc superconductors?, Comments Cond. Mat. Phys.16 (1992) 89-111.
- [16] Kes P., Aarts J., Vinokur V., van der Beek C., Dissipation in highly anisotropic superconductors, Phys. Rev. Lett.64 (1990) 1063-1066.
- [17] S. Kuplevakhsky, Microscopic theory of weakly couple superconducting multilayers in an external magnetic field, preprint cond-mat/9812277.
- [18] Lawrence W., Doniach S., Proceedings of the Twelfth International Conference on Low Temperature Physics, E. Kanda (Ed.), Academic Press of Japan, Kyoto, 1971, p. 361.
- [19] Li Y., Nirenberg L., The Dirichlet problem for singularly perturbed elliptic equations, Comm. Pure Appl. Math.51 (1998) 1445-1490. Zbl0933.35083MR1639159
- [20] Lieb E., Loss M., Analysis Graduate Studies in Mathematics, 14, American Mathematical Society, Providence, RI, 1997. Zbl0873.26002MR1415616
- [21] Rubinstein J., Schatzman M., Asymptotics for thin superconducting rings, J. Math. Pures Appl., série 977 (1998) 801-820. Zbl0904.35071MR1646800
- [22] Rey O., Blow-up points of solutions to elliptic equations with limiting nonlinearity, Differential Integral Equations4 (1991) 1155-1167. Zbl0830.35043MR1133750
- [23] Theorodakis S., Theory of vortices in weakly-Josephson-coupled layered superconductors, Phys. Rev.B42 (1990) 10172-10177.
- [24] Tinkham M., Introduction to Superconductivity, Mc Graw-Hill, New York, 1996.
- [25] Wei J., On the interior spike solutions for some singular perturbation problems, Proc. Roy. Soc. Edinburgh, Sect. A128 (1998) 849-874. Zbl0944.35021MR1635448
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.