Minimizers of the Lawrence–Doniach energy in the small-coupling limit : finite width samples in a parallel field

S. Alama; A. J. Berlinsky; L. Bronsard

Annales de l'I.H.P. Analyse non linéaire (2002)

  • Volume: 19, Issue: 3, page 281-312
  • ISSN: 0294-1449

How to cite

top

Alama, S., Berlinsky, A. J., and Bronsard, L.. "Minimizers of the Lawrence–Doniach energy in the small-coupling limit : finite width samples in a parallel field." Annales de l'I.H.P. Analyse non linéaire 19.3 (2002): 281-312. <http://eudml.org/doc/78546>.

@article{Alama2002,
author = {Alama, S., Berlinsky, A. J., Bronsard, L.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {rigorous analysis the energy minimizers; Lawrence-Doniach model; layered superconductors; degenerate perturbation theory},
language = {eng},
number = {3},
pages = {281-312},
publisher = {Elsevier},
title = {Minimizers of the Lawrence–Doniach energy in the small-coupling limit : finite width samples in a parallel field},
url = {http://eudml.org/doc/78546},
volume = {19},
year = {2002},
}

TY - JOUR
AU - Alama, S.
AU - Berlinsky, A. J.
AU - Bronsard, L.
TI - Minimizers of the Lawrence–Doniach energy in the small-coupling limit : finite width samples in a parallel field
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2002
PB - Elsevier
VL - 19
IS - 3
SP - 281
EP - 312
LA - eng
KW - rigorous analysis the energy minimizers; Lawrence-Doniach model; layered superconductors; degenerate perturbation theory
UR - http://eudml.org/doc/78546
ER -

References

top
  1. [1] Alama S., Berlinsky A.J., Bronsard L., Periodic vortex lattices for the Lawrence–Doniach model of layered superconductors in a parallel field, preprint, 2000, available on the preprint archive http://xxx.lanl.gov. Zbl1006.82040MR1849651
  2. [2] Ambrosetti A., Badiale M., Homoclinics: Poincaré–Melnikov type results via a variational approach, Ann. Inst. H. Poincaré Anal. Non Linéaire15 (1998) 233-252. Zbl1004.37043MR1614571
  3. [3] Ambrosetti A., Coti-Zelati V., Ekeland I., Symmetry breaking in Hamiltonian systems, J. Differential Equations67 (1987) 165-184. Zbl0606.58043MR879691
  4. [4] Bahri A., Li Y., Rey O., On a variational problem with lack of compactness: the topological effect of the critical points at infinity, Calc. Var. Partial Differential Equations3 (1995) 67-93. Zbl0814.35032MR1384837
  5. [5] Bethuel F., Brezis H., Hélein F., Ginzburg–Landau Vortices, Birkhauser, Boston, 1994. Zbl0802.35142MR1269538
  6. [6] Bethuel F., Riviére T., Vortices for a variational problem related to superconductivity, Ann. Inst. H. Poincaré Anal. Non Linéaire12 (1995) 243-303. Zbl0842.35119MR1340265
  7. [7] Bulaevskii L., Magnetic properties of layered superconductors with weak interaction between the layers, Sov. Phys. JETP37 (1973) 1133-1136. 
  8. [8] Bulaevskii L., Clem J., Vortex lattice of highly anisotropic layered superconductors in strong, parallel magnetic fields, Phys. Rev.B44 (1991) 10234-10238. 
  9. [9] Chapman S., Du Q., Gunzburger M., On the Lawrence–Doniach and anisotropic Ginzburg–Landau models for layered superconductors, SIAM J. Appl. Math.55 (1995) 156-174. Zbl0819.35133MR1313011
  10. [10] Clem J., Coffey M., Viscous flux motion in a Josephson-coupled layer model of high-Tc superconductors, Phys. Rev.B42 (1990) 6209-6216. 
  11. [11] Del Pino M., Felmer P., Local minimizers for the Ginzburg–Landau energy, Math. Z.225 (1997) 671-684. Zbl0943.35086MR1466408
  12. [12] Giorgi T., Phillips D., The breakdown of superconductivity due to strong fields for the Ginzburg–Landau model, SIAM J. Math. Anal.30 (1999) 341-359. Zbl0920.35058MR1664763
  13. [13] Grisvard P., Elliptic Problems in Nonsmooth Domains, Pitman Advanced Publishing Program, Boston, 1985. Zbl0695.35060MR775683
  14. [14] Gui C., Multipeak solutions for a semilinear Neumann problem, Duke Math. J.84 (1996) 739-769. Zbl0866.35039MR1408543
  15. [15] Iye Y., How anisotropic are the cuprate high Tc superconductors?, Comments Cond. Mat. Phys.16 (1992) 89-111. 
  16. [16] Kes P., Aarts J., Vinokur V., van der Beek C., Dissipation in highly anisotropic superconductors, Phys. Rev. Lett.64 (1990) 1063-1066. 
  17. [17] S. Kuplevakhsky, Microscopic theory of weakly couple superconducting multilayers in an external magnetic field, preprint cond-mat/9812277. 
  18. [18] Lawrence W., Doniach S., Proceedings of the Twelfth International Conference on Low Temperature Physics, E. Kanda (Ed.), Academic Press of Japan, Kyoto, 1971, p. 361. 
  19. [19] Li Y., Nirenberg L., The Dirichlet problem for singularly perturbed elliptic equations, Comm. Pure Appl. Math.51 (1998) 1445-1490. Zbl0933.35083MR1639159
  20. [20] Lieb E., Loss M., Analysis Graduate Studies in Mathematics, 14, American Mathematical Society, Providence, RI, 1997. Zbl0873.26002MR1415616
  21. [21] Rubinstein J., Schatzman M., Asymptotics for thin superconducting rings, J. Math. Pures Appl., série 977 (1998) 801-820. Zbl0904.35071MR1646800
  22. [22] Rey O., Blow-up points of solutions to elliptic equations with limiting nonlinearity, Differential Integral Equations4 (1991) 1155-1167. Zbl0830.35043MR1133750
  23. [23] Theorodakis S., Theory of vortices in weakly-Josephson-coupled layered superconductors, Phys. Rev.B42 (1990) 10172-10177. 
  24. [24] Tinkham M., Introduction to Superconductivity, Mc Graw-Hill, New York, 1996. 
  25. [25] Wei J., On the interior spike solutions for some singular perturbation problems, Proc. Roy. Soc. Edinburgh, Sect. A128 (1998) 849-874. Zbl0944.35021MR1635448

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.