The structure and limiting behavior of locally optimal minimizers

Moshe Marcus; Alexander J. Zaslavski

Annales de l'I.H.P. Analyse non linéaire (2002)

  • Volume: 19, Issue: 3, page 343-370
  • ISSN: 0294-1449

How to cite

top

Marcus, Moshe, and Zaslavski, Alexander J.. "The structure and limiting behavior of locally optimal minimizers." Annales de l'I.H.P. Analyse non linéaire 19.3 (2002): 343-370. <http://eudml.org/doc/78548>.

@article{Marcus2002,
author = {Marcus, Moshe, Zaslavski, Alexander J.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {infinite horizon problems; -optimal minimizers; limiting set; Zbl 0788.73015},
language = {eng},
number = {3},
pages = {343-370},
publisher = {Elsevier},
title = {The structure and limiting behavior of locally optimal minimizers},
url = {http://eudml.org/doc/78548},
volume = {19},
year = {2002},
}

TY - JOUR
AU - Marcus, Moshe
AU - Zaslavski, Alexander J.
TI - The structure and limiting behavior of locally optimal minimizers
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2002
PB - Elsevier
VL - 19
IS - 3
SP - 343
EP - 370
LA - eng
KW - infinite horizon problems; -optimal minimizers; limiting set; Zbl 0788.73015
UR - http://eudml.org/doc/78548
ER -

References

top
  1. [1] Berkovitz L.D., Lower semicontinuity of integral functionals, Amer. Math. Soc.192 (1974) 51-57. Zbl0294.49001MR348582
  2. [2] Coleman B.D., Necking and drawing in polymeric fibers under tension, Arch. Rational Mech. Anal.83 (1983) 115-137. Zbl0535.73016MR697955
  3. [3] B.D. Coleman, On the cold drawing of polymers, Comp. & Math. with Appls. 11, 35–65. Zbl0634.73030MR787427
  4. [4] Coleman B.D., Marcus M., Mizel V.J., On the thermodynamics of periodic phases, Arch. Rational Mech. Anal.117 (1992) 321-347. Zbl0788.73015MR1148212
  5. [5] Leizarowitz A., Infinite horizon autonomous systems with unbounded cost, Appl. Math. Optim.13 (1985) 19-43. Zbl0591.93039MR778419
  6. [6] Leizarowitz A., Mizel V.J., One dimensional infinite horizon variational problems arising in continuum mechanics, Arch. Rational Mech. Anal.106 (1989) 161-194. Zbl0672.73010MR980757
  7. [7] Marcus M., Uniform estimates for a variational problem with small parameters, Arch. Rational Mech. Anal.124 (1993) 67-98. Zbl0793.49019MR1233648
  8. [8] Marcus M., Universal properties of stable states of a free energy model with small parameters, Cal. Var.6 (1998) 123-142. Zbl0897.49010MR1606469
  9. [9] Marcus M., Zaslavski A.J., The structure of extremals of a class of second order variational problems, Ann. Inst. H. Poincare Anal. non Lineare16 (1999) 593-629. Zbl0989.49003MR1712568
  10. [10] Marcus M., Zaslavski A.J., On a class of second order variational problems with constraints, Israel J. Math.111 (1999) 1-28. Zbl0935.49001MR1710729
  11. [11] Mizel V.J., Peletier L.A., Troy W.C., Periodic phases in second order materials, Arch. Rational Mech. Anal.145 (1998) 343-382. Zbl0931.74006MR1664530
  12. [12] Zaslavski A.J., The existence of periodic minimal energy configurations for one-dimensional infinite horizon variational problems arising in continuum mechanics, J. Math. Anal. Appl.194 (1995) 459-476. Zbl0869.49003MR1345049
  13. [13] Zaslavski A.J., The existence structure of extremals for a class of second order infinite horizon variational problems, J. Math. Anal. Appl194 (1995) 660-696. Zbl0860.49001MR1350190
  14. [14] Zaslavski A.J., Structure of extremals for one-dimensional variational problems arising in continuum mechanics, J. Math. Anal. Appl.198 (1996) 893-921. Zbl0881.49001MR1377832

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.