A nonintersection property for extremals of variational problems with vector-valued functions
Annales de l'I.H.P. Analyse non linéaire (2006)
- Volume: 23, Issue: 6, page 929-948
- ISSN: 0294-1449
Access Full Article
topHow to cite
topZaslavski, Alexander J.. "A nonintersection property for extremals of variational problems with vector-valued functions." Annales de l'I.H.P. Analyse non linéaire 23.6 (2006): 929-948. <http://eudml.org/doc/78721>.
@article{Zaslavski2006,
author = {Zaslavski, Alexander J.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {calculus of variations; variational problems; periodic extremal; good functions},
language = {eng},
number = {6},
pages = {929-948},
publisher = {Elsevier},
title = {A nonintersection property for extremals of variational problems with vector-valued functions},
url = {http://eudml.org/doc/78721},
volume = {23},
year = {2006},
}
TY - JOUR
AU - Zaslavski, Alexander J.
TI - A nonintersection property for extremals of variational problems with vector-valued functions
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 6
SP - 929
EP - 948
LA - eng
KW - calculus of variations; variational problems; periodic extremal; good functions
UR - http://eudml.org/doc/78721
ER -
References
top- [1] Bangert V., Mather sets for twist maps and geodesics on tori, in: Dynamics Reported, vol. 1, Teubner, Stuttgart, 1988, pp. 1-56. Zbl0664.53021MR945963
- [2] Bangert V., On minimal laminations of the torus, Ann. Inst. H. Poincaré Anal. Non Linéaire6 (1989) 95-138. Zbl0678.58014MR991874
- [3] Cesari L., Optimization – Theory and Applications, Springer-Verlag, New York, 1983. Zbl0506.49001MR688142
- [4] Gale D., On optimal development in a multi-sector economy, Rev. Economic Studies34 (1967) 1-18.
- [5] Giaquinta M., Guisti E., On the regularity of the minima of variational integrals, Acta Math.148 (1982) 31-46. Zbl0494.49031MR666107
- [6] Hedlund G.A., Geodesics on a two-dimensional Riemannian manifold with periodic coefficients, Ann. of Math.33 (1984) 719-739. Zbl0006.32601MR1503086JFM58.1256.01
- [7] Leizarowitz A., Infinite horizon autonomous systems with unbounded cost, Appl. Math. Optim.13 (1985) 19-43. Zbl0591.93039MR778419
- [8] Leizarowitz A., Mizel V.J., One dimensional infinite horizon variational problems arising in continuum mechanics, Arch. Rational Mech. Anal.106 (1989) 161-194. Zbl0672.73010MR980757
- [9] Marcus M., Zaslavski A.J., The structure of extremals of a class of second order variational problems, Ann. Inst. H. Poincaré Anal. Non Linéaire16 (1999) 593-629. Zbl0989.49003MR1712568
- [10] Marcus M., Zaslavski A.J., The structure and limiting behavior of locally optimal minimizers, Ann. Inst. H. Poincaré Anal. Non Linéaire19 (2002) 343-370. Zbl1035.49001MR1956954
- [11] Morse M., A fundamental class of geodesics on any closed surface of genus greater than one, Trans. Amer. Math. Soc.26 (1924) 25-60. Zbl50.0466.04MR1501263JFM50.0466.04
- [12] Moser J., Minimal solutions of variational problems on a torus, Ann. Inst. H. Poincaré Anal. Non Linéaire3 (1986) 229-272. Zbl0609.49029MR847308
- [13] Rabinowitz P.H., Stredulinsky E., On some results of Moser and of Bangert, Ann. Inst. H. Poincaré Anal. Non Linéaire21 (2004) 673-688. Zbl1149.35341MR2086754
- [14] Rabinowitz P.H., Stredulinsky E., On some results of Moser of Bangert. II, Adv. Nonlinear Stud.4 (2004) 377-396. Zbl1229.35047MR2100904
- [15] Zaslavski A.J., The existence of periodic minimal energy configurations for one dimensional infinite horizon variational problems arising in continuum mechanics, J. Math. Anal. Appl.194 (1995) 459-476. Zbl0869.49003MR1345049
- [16] Zaslavski A.J., Dynamic properties of optimal solutions of variational problems, Nonlinear Anal.27 (1996) 895-931. Zbl0860.49003MR1404591
- [17] Zaslavski A.J., Existence and uniform boundedness of optimal solutions of variational problems, Abstr. Appl. Anal.3 (1998) 265-292. Zbl0963.49002MR1749412
- [18] Zaslavski A.J., The turnpike property for extremals of nonautonomous variational problems with vector-valued functions, Nonlinear Anal.42 (2000) 1465-1498. Zbl0968.49003MR1784087
- [19] Zaslavski A.J., A turnpike property for a class of variational problems, J. Convex Anal.12 (2005) 331-349. Zbl1104.49003MR2197290
- [20] Zaslavski A.J., Turnpike Properties in the Calculus of Variations and Optimal Control, Springer, New York, 2006. Zbl1100.49003MR2164615
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.