A nonintersection property for extremals of variational problems with vector-valued functions

Alexander J. Zaslavski

Annales de l'I.H.P. Analyse non linéaire (2006)

  • Volume: 23, Issue: 6, page 929-948
  • ISSN: 0294-1449

How to cite

top

Zaslavski, Alexander J.. "A nonintersection property for extremals of variational problems with vector-valued functions." Annales de l'I.H.P. Analyse non linéaire 23.6 (2006): 929-948. <http://eudml.org/doc/78721>.

@article{Zaslavski2006,
author = {Zaslavski, Alexander J.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {calculus of variations; variational problems; periodic extremal; good functions},
language = {eng},
number = {6},
pages = {929-948},
publisher = {Elsevier},
title = {A nonintersection property for extremals of variational problems with vector-valued functions},
url = {http://eudml.org/doc/78721},
volume = {23},
year = {2006},
}

TY - JOUR
AU - Zaslavski, Alexander J.
TI - A nonintersection property for extremals of variational problems with vector-valued functions
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 6
SP - 929
EP - 948
LA - eng
KW - calculus of variations; variational problems; periodic extremal; good functions
UR - http://eudml.org/doc/78721
ER -

References

top
  1. [1] Bangert V., Mather sets for twist maps and geodesics on tori, in: Dynamics Reported, vol. 1, Teubner, Stuttgart, 1988, pp. 1-56. Zbl0664.53021MR945963
  2. [2] Bangert V., On minimal laminations of the torus, Ann. Inst. H. Poincaré Anal. Non Linéaire6 (1989) 95-138. Zbl0678.58014MR991874
  3. [3] Cesari L., Optimization – Theory and Applications, Springer-Verlag, New York, 1983. Zbl0506.49001MR688142
  4. [4] Gale D., On optimal development in a multi-sector economy, Rev. Economic Studies34 (1967) 1-18. 
  5. [5] Giaquinta M., Guisti E., On the regularity of the minima of variational integrals, Acta Math.148 (1982) 31-46. Zbl0494.49031MR666107
  6. [6] Hedlund G.A., Geodesics on a two-dimensional Riemannian manifold with periodic coefficients, Ann. of Math.33 (1984) 719-739. Zbl0006.32601MR1503086JFM58.1256.01
  7. [7] Leizarowitz A., Infinite horizon autonomous systems with unbounded cost, Appl. Math. Optim.13 (1985) 19-43. Zbl0591.93039MR778419
  8. [8] Leizarowitz A., Mizel V.J., One dimensional infinite horizon variational problems arising in continuum mechanics, Arch. Rational Mech. Anal.106 (1989) 161-194. Zbl0672.73010MR980757
  9. [9] Marcus M., Zaslavski A.J., The structure of extremals of a class of second order variational problems, Ann. Inst. H. Poincaré Anal. Non Linéaire16 (1999) 593-629. Zbl0989.49003MR1712568
  10. [10] Marcus M., Zaslavski A.J., The structure and limiting behavior of locally optimal minimizers, Ann. Inst. H. Poincaré Anal. Non Linéaire19 (2002) 343-370. Zbl1035.49001MR1956954
  11. [11] Morse M., A fundamental class of geodesics on any closed surface of genus greater than one, Trans. Amer. Math. Soc.26 (1924) 25-60. Zbl50.0466.04MR1501263JFM50.0466.04
  12. [12] Moser J., Minimal solutions of variational problems on a torus, Ann. Inst. H. Poincaré Anal. Non Linéaire3 (1986) 229-272. Zbl0609.49029MR847308
  13. [13] Rabinowitz P.H., Stredulinsky E., On some results of Moser and of Bangert, Ann. Inst. H. Poincaré Anal. Non Linéaire21 (2004) 673-688. Zbl1149.35341MR2086754
  14. [14] Rabinowitz P.H., Stredulinsky E., On some results of Moser of Bangert. II, Adv. Nonlinear Stud.4 (2004) 377-396. Zbl1229.35047MR2100904
  15. [15] Zaslavski A.J., The existence of periodic minimal energy configurations for one dimensional infinite horizon variational problems arising in continuum mechanics, J. Math. Anal. Appl.194 (1995) 459-476. Zbl0869.49003MR1345049
  16. [16] Zaslavski A.J., Dynamic properties of optimal solutions of variational problems, Nonlinear Anal.27 (1996) 895-931. Zbl0860.49003MR1404591
  17. [17] Zaslavski A.J., Existence and uniform boundedness of optimal solutions of variational problems, Abstr. Appl. Anal.3 (1998) 265-292. Zbl0963.49002MR1749412
  18. [18] Zaslavski A.J., The turnpike property for extremals of nonautonomous variational problems with vector-valued functions, Nonlinear Anal.42 (2000) 1465-1498. Zbl0968.49003MR1784087
  19. [19] Zaslavski A.J., A turnpike property for a class of variational problems, J. Convex Anal.12 (2005) 331-349. Zbl1104.49003MR2197290
  20. [20] Zaslavski A.J., Turnpike Properties in the Calculus of Variations and Optimal Control, Springer, New York, 2006. Zbl1100.49003MR2164615

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.