Isoperimetric inequalities for parametric variational problems

Ulrich Clarenz; Heiko von der Mosel

Annales de l'I.H.P. Analyse non linéaire (2002)

  • Volume: 19, Issue: 5, page 617-629
  • ISSN: 0294-1449

How to cite

top

Clarenz, Ulrich, and von der Mosel, Heiko. "Isoperimetric inequalities for parametric variational problems." Annales de l'I.H.P. Analyse non linéaire 19.5 (2002): 617-629. <http://eudml.org/doc/78556>.

@article{Clarenz2002,
author = {Clarenz, Ulrich, von der Mosel, Heiko},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {minimal surfaces; critical immersions; isoperimetric inequality},
language = {eng},
number = {5},
pages = {617-629},
publisher = {Elsevier},
title = {Isoperimetric inequalities for parametric variational problems},
url = {http://eudml.org/doc/78556},
volume = {19},
year = {2002},
}

TY - JOUR
AU - Clarenz, Ulrich
AU - von der Mosel, Heiko
TI - Isoperimetric inequalities for parametric variational problems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2002
PB - Elsevier
VL - 19
IS - 5
SP - 617
EP - 629
LA - eng
KW - minimal surfaces; critical immersions; isoperimetric inequality
UR - http://eudml.org/doc/78556
ER -

References

top
  1. [1] Barbosa J.L., do Carmo M., A proof of a general isoperimetric inequality for surfaces, Math. Z.162 (3) (1978) 245-261. Zbl0369.53054MR508841
  2. [2] Beckenbach E.F., Radó T., Subharmonic functions and surfaces of negative curvature, Trans. Am. Math. Soc.35 (1933) 662-664. Zbl0007.13001MR1501708
  3. [3] U. Clarenz, Enclosure theorems for extremals of elliptic parametric functionals, Calc. Var., online publication DOI 10.1007/s005260100128, 2001. Zbl1018.53006MR1938817
  4. [4] Clarenz U., von der Mosel H., Compactness theorems and an isoperimetric inequality for critical points of elliptic parametric functionals, Calc. Var.12 (2001) 85-107. Zbl0968.35039MR1808108
  5. [5] Courant R., Dirichlet's Principle, Conformal Mapping, and Minimal Surfaces, Interscience, New York, 1950. Zbl0040.34603MR36317
  6. [6] Dierkes U., Hildebrandt S., Küster A., Wohlrab O., Minimal Surfaces, Vol. I, Grundlehren math. Wiss., 295, Springer, Berlin, 1992. Zbl0777.53012
  7. [7] Heinz E., Hildebrandt S., The number of branch points of surfaces of bounded mean curvature, J. Differential Geom.4 (1970) 227-235. Zbl0195.23003MR267495
  8. [8] Hildebrandt S., Randwertprobleme für Flächen mit vorgeschriebener mittlerer Krümmung und Anwendungen auf die Kapillaritätstheorie, Math. Z.112 (1969) 205-213. Zbl0175.40403MR250208
  9. [9] Hildebrandt S., von der Mosel H., On two-dimensional variational problems, Calc. Var.9 (1999) 249-267. Zbl0934.49022MR1725204
  10. [10] S. Hildebrandt, H. von der Mosel, Plateau's problem for parametric double integrals: I. Existence and regularity in the interior, Preprint 88 MPI f. Math. Leipzig, 2001. Preprint 745 SFB 256 Univ. Bonn, 2001, to appear in Comm. Pure. Appl. Math. Zbl1031.49038MR1990482
  11. [11] Sauvigny F., Introduction of isothermal parameters into a Riemannian metric by the continuity method, Analysis19 (1999) 235-243. Zbl0936.35046MR1715172

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.