Isoperimetric inequalities for parametric variational problems
Ulrich Clarenz; Heiko von der Mosel
Annales de l'I.H.P. Analyse non linéaire (2002)
- Volume: 19, Issue: 5, page 617-629
- ISSN: 0294-1449
Access Full Article
topHow to cite
topClarenz, Ulrich, and von der Mosel, Heiko. "Isoperimetric inequalities for parametric variational problems." Annales de l'I.H.P. Analyse non linéaire 19.5 (2002): 617-629. <http://eudml.org/doc/78556>.
@article{Clarenz2002,
author = {Clarenz, Ulrich, von der Mosel, Heiko},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {minimal surfaces; critical immersions; isoperimetric inequality},
language = {eng},
number = {5},
pages = {617-629},
publisher = {Elsevier},
title = {Isoperimetric inequalities for parametric variational problems},
url = {http://eudml.org/doc/78556},
volume = {19},
year = {2002},
}
TY - JOUR
AU - Clarenz, Ulrich
AU - von der Mosel, Heiko
TI - Isoperimetric inequalities for parametric variational problems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2002
PB - Elsevier
VL - 19
IS - 5
SP - 617
EP - 629
LA - eng
KW - minimal surfaces; critical immersions; isoperimetric inequality
UR - http://eudml.org/doc/78556
ER -
References
top- [1] Barbosa J.L., do Carmo M., A proof of a general isoperimetric inequality for surfaces, Math. Z.162 (3) (1978) 245-261. Zbl0369.53054MR508841
- [2] Beckenbach E.F., Radó T., Subharmonic functions and surfaces of negative curvature, Trans. Am. Math. Soc.35 (1933) 662-664. Zbl0007.13001MR1501708
- [3] U. Clarenz, Enclosure theorems for extremals of elliptic parametric functionals, Calc. Var., online publication DOI 10.1007/s005260100128, 2001. Zbl1018.53006MR1938817
- [4] Clarenz U., von der Mosel H., Compactness theorems and an isoperimetric inequality for critical points of elliptic parametric functionals, Calc. Var.12 (2001) 85-107. Zbl0968.35039MR1808108
- [5] Courant R., Dirichlet's Principle, Conformal Mapping, and Minimal Surfaces, Interscience, New York, 1950. Zbl0040.34603MR36317
- [6] Dierkes U., Hildebrandt S., Küster A., Wohlrab O., Minimal Surfaces, Vol. I, Grundlehren math. Wiss., 295, Springer, Berlin, 1992. Zbl0777.53012
- [7] Heinz E., Hildebrandt S., The number of branch points of surfaces of bounded mean curvature, J. Differential Geom.4 (1970) 227-235. Zbl0195.23003MR267495
- [8] Hildebrandt S., Randwertprobleme für Flächen mit vorgeschriebener mittlerer Krümmung und Anwendungen auf die Kapillaritätstheorie, Math. Z.112 (1969) 205-213. Zbl0175.40403MR250208
- [9] Hildebrandt S., von der Mosel H., On two-dimensional variational problems, Calc. Var.9 (1999) 249-267. Zbl0934.49022MR1725204
- [10] S. Hildebrandt, H. von der Mosel, Plateau's problem for parametric double integrals: I. Existence and regularity in the interior, Preprint 88 MPI f. Math. Leipzig, 2001. Preprint 745 SFB 256 Univ. Bonn, 2001, to appear in Comm. Pure. Appl. Math. Zbl1031.49038MR1990482
- [11] Sauvigny F., Introduction of isothermal parameters into a Riemannian metric by the continuity method, Analysis19 (1999) 235-243. Zbl0936.35046MR1715172
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.